

5CV.4.35 PVSEC 35, Marseille Weds 11-Sep-2019 17:00 to 18:30 Quantifying Long Term PV Performance and Degradation under Real Outdoor and IEC 61853 Test Conditions Using High Quality Module IV Measurements Steve Ransome (SRCL) and Juergen Sutterlueti (Gantner Instruments) steve@steveransome.com www.steveransome.com

INTRODUCTION

- Many PV performance degradation studies only report changes of P_{MAX} (corrected to STC) with time
- The type of degradation (e.g. R_{SHUNT}, R_{SERIES}) can cause differences in "P_{MAX} vs. instantaneous conditions" and also "Energy Yield vs. site"

Degradation type	P _{MAX} vs. irradiance G _I	Energy Yield vs. insolation site Y _R
Rshunt ↓	Bigger fall at low irradiance	Worst at low insolation sites
Rseries ↑	Falls more at high irradiance	Largest drop high insolation sites
lsc ↓	Similar	Similar

• A new approach is given which can :

 identify 12 different causes of underperformance or instability IV CURVE ANALYSIS vs. G₁ and T_{MOD}

A 1-diode model (e.g. de Soto) can't fit IV curves well with
✗ cell mismatch or shading (steps between I_{SC} and I_{MP})
✗ rollover (non ohmic back contact glitches ~ V_{OC})
✗ other "imperfections" in measurements
Irradiance and Temperature corrections to STC (e.g. using IEC 60891) rely on linear behaviour and exact factors being known

An updated "Loss factors Model" (with 12 detailed parameters) has been developed to avoid these limitations
✓ fits <u>any</u> IV curves (even imperfect traces)

qualifies/quantifies "faults" such as shading or mismatch

performs spectral and reflectivity/aoi corrections

LFM parameters are

MATRIX METHOD PR_{DC} vs. G_I and T_{MOD}

PV performance can also be measured at a matrix of irradiances and module temperatures e.g. " PR_{DC} @100-1100W/m²;10-85C"

IEC 61853-3:2018 specifies a bilinear interpolation fit but this
extrapolates non-linear functions inaccurately
is affected by missing data
has poor accuracy if there are random scatter errors

The "Mechanistic Performance Model" (MPM) is used here as it
✓ optimally fits any matrix data (PR_{DC}, nI_{SC}, nV_{OC}, nR_{SC} etc.).
✓ has been verified against data from 10+ top institutes
✓ used successfully since 2017

- quantify degradation rates vs. time
- $\circ~$ calculate power degradation vs. weather or

energy yield degradation by climate Example graphs are shown for 9 years of data Modules #11 Thin film (slightly degrading), #12 c-Si (stable) and #15 Thin Film (catastrophic failure)

EXI	PLA	NATIO	N OF LFM COEF	FICIENTS
	Previ ous LFM 6	More Detailed LFM 12	Loss is Related to	When do worst losses usually occur ?
1		Soiling	Time since rain; dusty sites	After long, dry periods
2		Spectral Response	EQE vs. Spectral distribution (SF)	Thin Film – Redder ; MJ – when not matched
3		Reflectivity	Reflectivity vs. AOI and Beam Fraction (BF)	Clear sky, off Axis; no ARC
4	I _{sc}	I _{sc}	Browning, Delamination	
5	R _{sc}	R _{sc}	R _{SHUNT}	Low light levels
6		Curvature I _{sc} to I _{MP}	Mismatch from cell cracking or shading	Low light levels
7	I _{MP}	FF	Fill factor (I and V separate)	
8	V _{MP}	FF_{v}	independent R _{SHUNT} , R _{SERIES}	
9		Curvature V _{MP} to V _{oc}	If non ohmic back contact, roll over	High light levels
10	R _{oc}	R _{oc}	Related to ~ R _{SERIES} (+exponential component)	High Light levels
11	V _{oc}	V _{oc}	Varies as ~Log irradiance	Low light levels
12		Tempe-r ature	Gamma (P _{MAX} but can be separated components)	High Temperatures, cSi

- technology agnostic
- 🗹 area independent
- normalised
- ✓ meaningful e.g. "% power loss due to R_{SERIES}"

 $MPM : PR_{DC} =$ $C_1 + C_2 \times dT_{MOD} + C_3 \times Log_{10}(G_I) + C_4 \times G_I + C_5 \times WS$ Low light ~V_{oc}, R_{shunt} Tolerance Temperature coeff High light R_{SERIES} Wind Where $dT_{MOD} = (T_{MOD} - 25)C; G_1 = kW/m^2; WS = ms^{-1}$ **Example Matrix measurements and MPM fits:** $\uparrow PR_{DC}$ vs \rightarrow Irradiance and temperature (coloured lines) 1.00 0.95 0.90 DBRd0 CREST 0.75 Gantner 📕 📕 Loughborough University 0.65 POA Irradiance Gi (kW/m^2) Gi (kW/m2) **Typical MPM fit lines to outdoor data** Typical MPM fit lines to indoor data 4000 data points, binned, 1year at OTF 1-3 measurements at ~23 points

✓ The MPM has "normalised, orthogonal, robust and meaningful" coefficients C₁ to C₅
 ✓ C₁-C₅ magnitudes give normalised losses
 ✓ Changes C₁-C₅ with time give normalised degradation rates and imply cause

PV PERFORMANCE vs. LOSS TYPES (1 day)

DEGRADATION vs. LOSS TYPE and TIME

 $\sum G_{350...1050nm}$

- "Smooth height increase vs. time" give degradation rate
 - "Sudden changes" mean performance glitch e.g. breakage

DEGRADATION/yr 2010-2019 vs. IRRADIANCE

MID		<u>.</u>	, PRdc_U	slsc_U	sRsc	sRoc	sVoc_U	#11 R _{sc} R _{oc} and V _{oc} degradation,
	11	ALL	-1.6%	-0.2 <mark>%</mark>	-0.5 <mark>%</mark>	-0.4 <mark>%</mark>	-0.5 <mark>%</mark>	worse @low light
	11	HIGH	-1.5%	-0.3 <mark>%</mark>	-0.4 <mark>%</mark>	-0.4 <mark>%</mark>	-0.4%	
	11	LOW	-1.8 <mark>%</mark>	-0.1%	-0.8 <mark>%</mark>	-0.3 <mark>%</mark>	-0.6 <mark>%</mark>	#12 "Stable"
	12	ALL	-0.1%	-0.2 <mark>%</mark>	0.0%	0.0%	0.1%	~0.1%/yr
	12	HIGH	-0.1%	-0.3%	0.0%	0.0%	0.1%	

	•,	_	_	_		_
G _I (kW/m²)	1	1	0.8	0.5	0.2	1
T _{AMB} (C)	-	20	20	-	-	-
T _{MOD} (C)	25	(~55)	(~47)	15	25	75
WS (ms ⁻¹)	0	1	1	0	0	0
Tilt (degrees)	-	-	45	-	-	-
AM (#)	1.5	1.5	1.5	1.5	1.5	1.5

GLOSSARY

- Loss Factors%losses due to parameters such as R_{SERIES}, underperformance etc.LFMLoss factors model (previous 6, more detailed 12) meaningful,
normalised loss coefficients
- **MPM** Mechanistic performance model optimally fits $PR_{DC} = f(G_{I}, T_{MOD})$
- Empirical Simple model with non normalised, non meaningful coefficientsMechanistic Better model with normalised, meaningful coefficients
- **Matrix method** Measure PV performance at given array of (GI, Tmod) points
- Normalised PR_{DC}

G,

T_{MOD}

STC

SF

- **nalised** Divide by reference values, area independent quality factors ~1 DC performance ratio = meas.Pmax/ref.Pmax/Irradiance(suns)
- Plane of array instantaneous irradiance (kW/m²)
 - Module temperature (C)
 - Standard Test Conditions 1kW/m², 25C T_{MOD}, AM1.5, WS 0 ms⁻¹
 - Spectral Fraction $\sum G_{350...650nm} / G_{350...1050nm}$

CONCLUSIONS

The enhanced Loss Factors Model (LFM-12) and Mechanistic Performance Model (MPM) have been used together to

- Find reasons and magnitudes for any faults/underperformance
- Quantify long term degradation rates at different weather conditions such as IEC 61853.
- The LFM/MPM method has been added to Gantner Instruments' Outdoor Facility Solution and Analytics platform <u>gantner-instruments.com/products/software/gi-cloud/</u>, can be accessed with API interface, e.g. for machine learning or model verification
- [*] "Checking the new IEC 61853.1-4 with high quality 3rd party data to benchmark its practical relevance in energy yield prediction" 46th PVSC Chicago 2019