OPTIMUM USE OF THE LOSS FACTORS MODEL (LFM) FOR IMPROVED PV PERFORMANCE MODELLING

Steve Ransome¹ & Juergen Sutterlueti²

¹Steve Ransome Consulting Limited, London UK ²Gantner Instruments, Germany

PVSAT 13 Bangor, Wales 5-7 Apr 2017

www.steveransome.com

1

24-Jan-18

Gantr

1) What is the Loss Factors Model (LFM)?

PV performance model

- 6 normalised, independent, significant losses based on IV curves (indoor or outdoor).
- Normalised efficiency PR_{DC} or MPR = product of 6 LFM parameters.
- 2 curve checks quantify faults
 - I@V_{MP}/2 cell breakage/mismatch
 - V@I_{MP}/2 rollover (non ohmic contact).
- Fits <u>all</u> PV technologies
 - e.g. c-Si vs TF, OPV etc.

Gantner

nstruments

www.steveransome.com

24-Jan-18

6 LOSS FACTORS MODEL + 2 CHECKS

2) What the LFM can do

- PV manufacture optimisation
 - e.g. how much P_{MAX} is lost due R_{SERIES}?
 - Should/could it be improved?
- Quantify module tolerance and variability e.g. nl_{sc} = 99 ± 3%
 - quickly identifies any atypical modules
- Generate modelling coefficients
 - Low light/ STC efficiency ($\eta@0.2/\eta@1.0 \text{ kW/m}^2$)
 - plot vs. T_{MODULE} for gamma γ (%P_{MAX}/K) etc.
- Quantify any degradation and identify its causes
 - e.g. I_{SC}, V_{OC}, FF R_{SHUNT} falling
 - mismatch, rollover or R_{SERIES} rising
- Predict energy yield with site dependent climate data
- Can work at module, string, combiner, inverter, station and site level

3) How the LFM differs from of other models

Curve fit e.g. 1-diode models (de Soto et al)

- "Best fit" IV curve with I_{SCO}, R_{SHUNT}, R_{SERIES}, I_O and nf
- R_{SHUNT} hard to extract

24-lan-18

- Perfect fit impossible with non-uniformities, degradation etc.
- Fit can depend on optimisation algorithm used (e.g. whether IV points are weighted near V_{MP} or not)

Point models e.g. **SAPM** (Sandia Array Performance Model)

- ~29 parameters to fit the I_{SC}, I_{MP}, V_{MP}, V_{OC} and temp. coeffs (%/K).
- R_{sc} and R_{oc} are not modelled but are important for degradation.
- Most parameters are not normalised and many non-physical

www.steveransome.com

Typical LFM curves in real weather conditions nlsc For an optimum device all lines should be near 100% **Icurvature** nRsc nlmp T denotes temperature compensation Most points on main lines, some outliers can be easily removed MEASURED IV mVmp*mImp =Pmax.meas 1.4 Gantner nVo nVmp $\eta_{\text{MEASURED}} / \eta_{\text{NOMINAL.STC}} = nI_{\text{SC}} \times nR_{\text{SC}} \times nI_{\text{MP}} \times nV_{\text{MP}} \times nR_{\text{OC}} \times nV_{\text{OC}}$ 1.3 nVmp 1.2 LFM Values nlsc T nlmp nRsc nVoc_T 0.8 nRoc 0.7 Gantner 0.6 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 0 Gi (kW/m²)

www.steveransome.com

24-Jan-18

Gantner

instruments

Steve Ransome Consulting Limited

5

6 LOSS FACTORS MODEL + 2 CHECKS

5) Monitoring LFM Values with time and data smoothing

• Weather data, typical Arizona morning, mostly clear some intermittent cloud

24-Jan-18

Gantner

instruments

www.steveransome.com

S R C L Steve Ransome Consulting Limited

7) Characterising the module temperature dependency with LFM parameters

.FM Values

www.steveransome.com

- Plot all LFM parameters vs. module temperature.
- Select "clear sky, higher temperatures and lower angles of incidence"
- Gradients then give the temperature coefficients
 d(nI_{sc})/dT→ alphaI_{sc}
 d(nV_{oc})/dT→ betaV_{oc}
 d(PRdc)/dT→ Gamma Pmax
- Not all parameters are temperature dependent

(;)20

24-Jan-18

8) LFM coefficients vs. PV technologies - c-Si, Thin Film How do nR_{sc}, nR_{oc}, nV_{oc} behave for different technologies?

9) Quantifying Degradation at different
conditions from LFM parameter changes
2010-2016 LFM vs. irradiance for atypical CdTe (degrading ~-3%/y)

Gantner

instruments

www.steveransome.com

24-Jan-18

- LFM identifies what causes degradation and the rate
- nR_{oc} -1.0%/y (all light levels)
- nR_{sc} -2.0%/y (low light)
 -0.5%/y (high light)
- Suggests a non ohmic R_{SHUNT} drop

11

6 LOSS FACTORS MODEL + 2 CHECKS

10) Curve fitting normalised vs. predicted

www.steveransome.com

Gar

24-Jan-18

- nl_{sc} is usually the most scattered and may benefit from soiling, AOI beam fraction and Spectrum corrections
- All other LFM parameters are usually smooth and easy to curve fit (usually log, linear or power fit vs. irradiance)
 - e.g. $y = C_0 + C_1^* \ln(GI) + C_2^* GI^2$

Python code defining the LFM Parameters being put in PVLIB Defining all LFM parameters and equations

<pre>nIc = mI2/(mIsc-mVmp/2/mRsc) nVc = mV2/(mVoc-mImp/2*mRoc)</pre>	<pre># I curvature I @ Vmp/2 # V curvature V @ Imp/2</pre>
<pre>mIr = (mIsc*mRsc-mVoc)/(mRsc-mRoc) mVr = mRsc*(mVoc-mIsc*mRoc)/(mRsc-mRoc)</pre>	<pre># temporary calc I @ Rsc-Roc intercept # temporary calc V @ Rsc-Roc intercept</pre>
<pre># normalised LFM parameters unit %</pre>	
nIsc_U = mIsc/rIsc/Gi	# Un temperature corrected
nRsc = mIr/mIsc	#
nImp = mImp/mIr*rIsc/rImp	#
nVmp = mVmp/mVr*rVoc/rVmp	#
nRoc = mVr/mVoc	#
$nVoc_U = mVoc/rVoc$	# Un temperature corrected

nVoc_T = nVoc_U * (1-bVoc_Ref*(Tmod - 25)) # Temp correct

11) Reference Material available – from GI for PVLIB To be published and available soon

- From GI, Tempe CdTe and c-Si
 Essential Data
- Site location and orientation
- Date and time
- Irradiance (ref cell, pyr)
- Ambient, Module temperature

Optional (for corrections)

• Wind speed

24-lan-18

 Clearness, Beam Fraction, Spectrum

Sample Python source code to import, analyse, validate and display LFM data

```
# DERIVE CURVATURE PARAMS
nIc = mI2/(mIsc-mVmp/2/mRsc)
                                # I curvature I @ Vmp/2
nVc = mV2/(mVoc-mImp/2*mRoc)
                                # V curvature V @ Imp/2
# CALCULATE (mIr, mVr) WHERE RSC and ROC LINES CROSS
to make maths easier
mIr
# now calculate normalised LFM parameters unit %
nIsc U = mIsc/rIsc/Gi
                                # U=Un temp corr
       = mIr/mIsc
nRsc
       = mImp/mIr*rIsc/rImp
nImp
       = mVmp/mVr*rVoc/rVmp
nVmp
       = mVr/mVoc
nRoc
nVoc U = mVoc/rVoc
                                # U=Un temp corr
# also
nVoc T = nVoc U * (1-bVoc Ref*(mTmod-Tstc))
                                                    #
Temp correct by bVoc
```

14

www.steveransome.com

www.pvpmc.org

Thanks for your attention and please get involved!

instruments

An Industry and National Laboratory collaborative to Improve Photovoltaic Performance Modeling

www.steveransome.com

• Spare

Standard models

<u>Curve fits</u> e.g. 1 diode (fit equivalent circuit to IV curve)

- Imperfect traces (e.g. cell mismatch) cause curve fit difficulties
- R_{SHUNT}, R_{SERIES} etc. vary with G₁, T_{MOD} (not defined in model) so can predict incorrect Low light efficiency and gamma

Point modelling e.g. SAPM (I_{SC}, P_{MP}, V_{OC} ...)

- Hard to understand 29 coefficients including for AOI and SR
- Difficult to get a unique fit
- No modelled R_{SERIES} or R_{SHUNT}

- Neither model is normalised, their coefficients are area dependent and make it difficult to study module variability and degradation.
- Both models predict much more than just P_{MAX}

24-Jan-18

www.steveransome.com

Modules are characterised by "PR_{DC} vs. Irradiance and T_{MOD} " As used in simulation programs and matrix method IEC 61853

% of points / year AZ

(Jar

24-Jan-18

% of energy yield / year AZ

18

instruments www.steveransome.com

Conclusions

- 10 Existing models have been tested
- Empirical models can be difficult to fit and may have meaningless coefficients
- LFM was used to determine optimum coefficients for a new Mechanistic Model (L) which works well

Next steps

24-Jan-18

- Further analysis- more modules, more sites
- Model spectral response, reflectivity and soiling, seasonal annealing
- Show reasons for any degradation
- If you wish to join in please send details of your model and any measurement data
- Thanks for your attention and please get involved!

Data required Setup Location : Lat, Lon, Alt Orientation : Tilt and Azi Module Details : Datasheet Values and Temp Coeffs

Essential : Date+time G₁ Irradiance (by sensor type) T_{AMBIENT} T_{MODULE} Windspeed P_{DC}

Useful to have : I_{DC} and V_{DC} G_{H} , D_{H} G_{N} Spectrum, Rel Hum I_{SC} , V_{OC} , R_{SC} , R_{OC}

ILLIEI <u>www.steveransome.com</u>

Conclusions

Data required Setup Location : Lat, Lon, Alt **Orientation :** Tilt and Azi **Module Details :** Datasheet Values and Temp Coeffs

Essential : Date+time G_I Irradiance (by sensor type) T_{AMBIENT} T_{MODULE} Windspeed P_{DC}

Useful to have :

24-Jan-18

 I_{DC} and V_{DC} G_{H} , D_{H} G_{N} Spectrum, Rel Hum I_{SC} , V_{OC} , R_{SC} , R_{OC}

(Jant

instruments

www.steveransome.com

Current coefficients

Voltage coefficients

instruments

Steve Ransome Consulting Limited

Which parameters affect PV module efficiency?

The efficiency of a PV module is <u>dominated</u> by

- **G**_I Global plane of array irradiance (kW/m²)
- T_{MOD} Module temperature (C)

There are smaller influences from

- T_{AMB} Ambient temperature (C)
- WS Wind speed (ms⁻¹)
- **BF** Beam/global irradiance fraction (%
- kTh Clearness index (%)
- AM Spectrum

24-Jan-18

• AOI Reflectivity vs. angle of incidence

www.steveransome.com

