Accurate module performance characterisation using novel outdoor matrix methods

Steve Ransome (SRCL, UK) and Juergen Sutterlueti (Gantner Instruments)

www.steveransome.com

mailto: steve@steveransome.com

PVSC 48 : 23rd Jun 2021

8D: Characterization and Monitoring of Modules and Systems 4:15 PM eastern time.

26-Jun-21

How linearly do PV modules behave?

instruments

A module that behaves linearly can be fitted just by functions of irradiance G or temperature T independently

 $\mathsf{PR}_{\mathsf{DC}} = \mathsf{f}(\mathsf{G}) + \mathsf{f}(\mathsf{T})$

www.steveransome.com

i.e. without any "f(G,T) non_linear terms"

- **1.** Do modules perform linearly?
- 2. If there are non-linearities, what causes them and how non-linear are they?

3. How can we best model them?

Measuring matrices of $PR_{DC}(G,T)$

(A) INDOOR (IEC 61853:2011-2018)

Gives worse modelling accuracy

No understanding of non linearities

 \rightarrow

 \rightarrow

 \rightarrow

COSTS:

$PR_{DC} = P_{MP_{MEAS}}/P_{MP_{REF}}/G_{SUNS}$

Outdoor measurements :

2. More matrix bins better for coefficient extraction

Quick results with 3. insulation/heating, mesh cover, 2D mistrack

(B) OUTDOOR (GI OTF, Tempe AZ)

From IV curves or P_{MPP} with real weather

- \rightarrow 260k measurements/year (if every 1m)
- \rightarrow Needs data sanitizing and filtering
- \rightarrow Can give ~100 matrix points (G=100W/m²,T=5C bins)
- \rightarrow Better analysis possible e.g. any non linearities

COSTS: Outdoor /module \$1000/6 months with spectral, AOI

26-Jun-21

er instruments

All measurement data is from Gantner Instruments' OTF Solutions Tempe, AZ

Further info in published paper, otf@gantner-instruments.com or email authors

PV Module Measurements:

Fixed and 2D track; IV curve every minute, all environmental sensors, spectral parameters PV Module Power up to 500W/800W

High quality digitalization, current accuracy 0.1% FS, voltage: 0.05% FS

- Scalable system (4.. 48 channels) with raw data access
- Local or cloud-based data streaming

Derived parameters using Loss Factors and Mechanistic Performance Models Integrated Python Jupyter Lab for direct analysis and automatic reporting

Continuous measurements in Arizona since 2010; Other sites available around the world

Trusted by leading PV Module manufacturers, Technology providers and Research Labs

GI OTF MEASUREMENTS

Name	Description	Units
GH	Global Horizontal Irradiance	kW/m²
Dн	Diffuse Horizontal Irradiance	kW/m²
B _N	Beam Normal Irradiance	kW/m²
G	Global Inclined Irradiance	kW/m²
	(Pyranometers and c-Si ref cells)	
T _{AMB}	Ambient Temperature	С
T _{MOD}	Back of Module Temperatures	С
WS	Wind Speed	ms⁻¹
WD	Wind Direction	0
RH	Relative Humidity	%
G(λ)	Spectral Irradiance G(350–1050nm)	W/m²/nm

How to generate dense performance matrices from good outdoor data 1/3

How to generate dense matrix points?

26-Jun-21

How to generate dense performance matrices from good outdoor data 2/3

26-Jun-21

Gantner

How to generate dense performance matrices from good outdoor data 3/3

26-Jun-21

www.steveransome.com

Steve Ransome Consulting Limited

Smooth plots can be generated from good quality outdoor measurements which allow accurate characterisation

'PR_{DC} vs. irradiance' for <u>four technologies</u>

Irradiance G_{TI} [W/m²] \rightarrow

<u>cSi, HIT and CdTe</u> look <u>quite linear</u> over the matrix area (Extreme weather points may have a little scatter) This CIGS has a different shape rising PR_{DC} at high G and larger gamma separation **‡** at high temperatures which indicates non-linearity

'PR_{DC} vs. Temperature' from outdoor matrix

Datasheets usually report <u>1 constant gamma value</u> This plot will <u>quantify any non-linear behaviour</u>

26-Jun-21

Gamma(G,T) heatmaps for four modules

cSi, HIT : ~constant γ(G,T)

→ "A constant temperature coefficient means a linear device" CdTe, CIGS : can have <u>Non-linear temperature coefficients</u> which will affect PR_{DC}(G,T)

1st Pass : Fitting performance matrices with a linear model (mpm6)

instruments

26-Jun-21

Steve Ransome Consulting Limited

Typical outdoor linear model residual fit error PR_{DC(MEAS-FIT)} four modules

Irradiance G_{TI} [W/m²] \rightarrow

This CIGS module has a <±0.5% Monotonic residual error between high ↔ low temperature indicating a <u>Non-linearity</u> (as expected from the gamma heatmap)

26-Jun-21

Many more modules were studied linear mpm6 residual fit error

>3 Different types of "<1%/bin" perturbations have been seen so far (1st Pass) use linear fit to <u>identify and quantify any non-linearities</u> (2nd Pass) simple device dependent corrections <~0.5-1.0% <u>if needed</u>

Irradiance G_{TI} [W/m²] \rightarrow

26-Jun-21

Thank you for your attention !

Contact us for OTF enquiries and high-quality data sets for your own research <u>www.gantner-instruments.com/products/software/gi-cloud/</u>

26-Jun-21

Gantner

