HOW WELL DO PV MODELLING ALGORITHMS REALLY PREDICT PERFORMANCE?

S. J. Ransome, BP Solar UK
Performance Ratio definition

PR = (Measured)/(Theoretical Lossless) ac output

PR = (kWh\textsubscript{AC}/kWp) / (POA Insolation)

0.78 = 780 (kWh/kWp) / 1000 (kWh/m2) e.g.

PR from Sizing Program predictions and measurements are often ~75-80%

But

Do programs model everything correctly? Are there sufficient unknowns and user defined inputs to enable predictions to coincide with measurements?
General Sizing program methodology

Inputs

- Site Location
- Array Orientation, mounting
- Select PV modules
- User Losses e.g. Shade, dirt, snow
- Select BOS components

Databases

- Monthly Average Weather
- PV Model vs Irradiance, Temp. etc
- BOS Models Inverter, Wiring etc

Calculations

- Horizontal plane Irradiance /hour
- Tilted plane Irradiance /hour
- Module Temperature C
- DC Power
- AC Power
- Sum year Σ=Energy yield

discussed in this talk proceedings
Calculating Tilted plane irradiance from horizontal plane measurements

How do we calculate the Diffuse:Beam ratio if it’s not measured?
Calculating kT (Clearness index) to find the beam:diffuse ratio

Cloudy kT = 0.1-0.3, Clear kT = 0.6-0.8
Calculating Beam:Diffuse fraction from Clearness Index (i)

Models use a curve fit for Beam Fraction from Clearness Index
Calculating Beam:Diffuse fraction from Clearness Index (ii)

Models use a curve fit for Beam Fraction from Clearness Index

ISET data looks quite different

Large scatter but doesn’t follow the model well
Calculating tilted plane irradiance from monthly horizontal average insolation

- Horizontal Global /Month
- Horizontal Global /Hour
- Horizontal Global /Minute
- Horiz. Global and Diffuse /Minute
- Tilted Global /Minute

- Cloudy day
- Sunny day
- Variable day

- from database
- transition matrices for clearness index
- diffuse fraction from clearness index
- realistic tilted plane
Measured vs Simulated Insolation vs Irradiance and frequency of measurement

Measured data
- Averaging overpredicts low light levels, loses high light

Modelled data
- also shows “averaging effect”
- has the wrong overall shape
Module Temperature vs time and irradiance under variable weather

Variable weather:
brightness will be higher and temperatures cooler than averaging would suggest
• Models predict most insolation at low irradiance

• Measurements show most insolation at high irradiance (except for poor year 2000)

• Yearly insolations have a stdev of ~ ± 4%

• Model has wrong shape
Models for module efficiency vs irradiance and temperature

- **Lookup table**
 (EN 50380 200-1000W/m² @25C, AM1.5)

- **Pmax at “high” and “low” irradiances**
 Then interpolate a curve between two points
 (mathematically > 3 points are required for a curve)

- **Equivalent circuit 1-diode model (nf, Jo, Rs, Rsh, Jsc)**
 A 1-diode model does not fit IV curve near Pmax.
 Some parameters are temperature dependent

- **Spec sheet Data**
 Temperature dependency from α β γ coefficients.

- **Characterisations usually on one module, but there is a spread in module parameters**
Outdoor Measured Efficiency
sc-Si, mc-Si, CIS, a-Si, ISET, Germany (i)

vs Irradiance

- Similar relative efficiencies at low light level
- This looks very different to some models
Outdoor Measured Efficiency
sc-Si, mc-Si, CIS, a-Si, ISET, Germany (ii)

- Similar relative efficiencies at low light level
- This looks very different to some models

vs Irradiance

vs Diffuse:Beam
- Similar relative efficiencies at Diffuse
- This looks very different to some claims
Outdoor Measured Efficiency
sc-Si, mc-Si, CIS, a-Si, ISET, Germany (iii)

Efficiency / nominal

Measured

Sizing program

Irradiance (kW/m²)
All weather related parameters are correlated with irradiance

<table>
<thead>
<tr>
<th>Weather Parameter</th>
<th>"Poor weather"</th>
<th>"Good Weather"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irradiance (kW/m²)</td>
<td>Lower</td>
<td>Higher</td>
</tr>
<tr>
<td>Ambient Temp. (C)</td>
<td>Lower</td>
<td>Higher</td>
</tr>
<tr>
<td>Module Temp. (C)</td>
<td>Lower</td>
<td>Higher</td>
</tr>
<tr>
<td>Angle of incidence</td>
<td>~Parallel</td>
<td>~Normal</td>
</tr>
<tr>
<td>Solar height</td>
<td>Low (redder)</td>
<td>High (bluer)</td>
</tr>
<tr>
<td>Beam Fraction</td>
<td>~Diffuse</td>
<td>~Direct</td>
</tr>
</tbody>
</table>

Hotter module (y axis) with higher irradiance (x axis) →

Difficult to extract dependencies from outdoor measurements
Inverter Modelling

How well are inverters modelled?

Their efficiencies can depend on:

• Input voltage (Baumgartner et al)
• Ambient temperature (ISET)
• Transient weather conditions
• Turn on
• Clipping
• Are all these considered?
• High and low limits for loss in a typical PV System
• Final performance depends on the product of each of these
• A typical system is shown in black
• Just these losses result in a PR of ~75%
PR vs loss stage showing ±1 and ±2σ spreads with uncertainties

- Estimate 3sigma distribution from previous graph for loss in a PV System
- Final performance depends on the product of each of these
- Just the spread in these losses result in a PR of ~75±3% for 1stdev
CONCLUSIONS

• Met Data programs can overestimate low light insolation
• There is a spread in performance of real modules not modelled in databases
• PV efficiency at low light/high diffuse is often better than Sizing databases
• Performance ratios ~75-80% can be obtained from both measurements and Sizing programs
• Unknown inputs can result in PR ± ~5% for a system
• Outdoor data gives better understanding of performance
• Sizing programs help minimise avoidable losses
ACKNOWLEDGEMENTS

Peter Funtan ISET Kassel,
Stephen Poropat BP Solar Australia
and other staff at BP Solar worldwide.
Also thanks to work experience student
Mathieu Fox for technical discussions.

This paper will soon join more than
70 of BP Solar’s other technical papers at
http://www.bpsolar.com/techpubs
Thank you for your attention!