

FITTING IV CURVE PARAMETERS (MODULE #5)

The "Slope at high irradiance" v_mp and pr_dc is lowered by any i².r_series loss as i~g v_oc has no r_series loss as i=0

Benchmarking PV performance models with high quality IEC 61853 Matrix measurements (Bilinear interpolation, SAPM, PVGIS, MLFM and 1-diode) Steve Ransome (SRCL) : <u>steve@steveransome.com</u> : <u>www.steveransome.com</u>

DEFINITIONS:

(Coefficients shaded)

Empirical Model: non-physical coefficients, not useful values

Mechanistic Model : physically meaningful, useful values

AVG, STDEV RMSE (9 Si MODULES)

Parameters		A	MLFM4	B) SAPM	
nc	orm_i_sc		0.16%		0.42%
nor	m_v_oc *		0.08%		0.07%
no	rm_i_mp		0.23%		0.29%
no	rm_v_mp		0.20%		0.25%
n	orm_ff		0.31%		0.56%
	pr_dc		0.17%		0.40%
Avg	all params		0.19%		0.33%

Parameters	A) MLFM4		B) SAPM	
norm_i_sc		0.05%		0.08%
norm_v_oc *		0.01%		0.03%
norm_i_mp		0.05%		0.08%
norm_v_mp		0.05%		0.06%
norm_ff		0.07%		0.11%
pr_dc		0.05%		0.09%
Avg all params		0.04%		0.06%

The pvgis pr_dc equation used for all parameters.

A BETTER METHO	DD TO
Isc [A] Voc [V] 5.98 5.96 5.94 5.92 5.90 5.88 20 30 40 50 60 70 Temperature [°C]	Temperature from good n <u>trend fits</u>
Imp [A] Vmp [V] 5.51 60 5.50 60 5.49 50 20 30 40 50 60 70 Temperature [°C]	e.g. temp. co PVGIS has no
IEC 61853 values and linear trend fits Trend fits vs. predicte	d model

EC trend temp. coeffs.		Parameters	A) MLFM4			
	0.03%	norm_i_sc		0.		
	-0.24%	norm_v_oc *		-0.		
	0.00%	norm_i_mp		0.		
	-0.29%	norm_v_mp		-0.		
	-0.08%	norm_ff		-0.		
	-0.30%	pr_dc		-0.		
1/K Residual error			(1) < +/- 0.01%			
Improved procedure : Fit matrix with MLFM4						

SUMMARY OF DAT MODEL RESIDUALS vs. IRRAD	A F		F		
Model name	A) ML	FM4+			
pr_dc (r_series loss)	=	=			
v_mp (r_series loss) imp (smaller so noisier)	=	= =			
voc (no r_series loss)	=	=			
AVERAGE RESIDUAL FIT ERROR (pr_dc_FC					
Avg nRMSE pr_dc Std nRMSE pr_dc					
SUMMARY OF MODEL PERFORMANCE					
	Voc fit r Useful o Good te Best mo	ow impro orthogonal mp coeffs del overal	,\ 		
 Models need ar 	n <mark>i².</mark>	r_se			

series term for best fits to pr_dc and v_mp Accurate temperature coefficients can be found just by fitting matrix data MLFM4 has about 50% of RMSE of other models tested

Physical fits

References : www.steveransome.com email : steve@steveransome.com https://pvpmc.sandia.gov/ https://github.com/pvlib/pvlib-python

mechanistic performance model, 4 meaningful, normalised coefficients param = $c_1 + c_2 + c_3 + log 10(g) + c_4 + g \#$ not for v_oc # c_4 + g to fit r_series loss * v oc = c 1 + c 2*t + c 3*log10(g)*t K/t stc K + c 4*g # v oc only **SAPM:** "partly mechanistic" dimensioned vmpo +c2*s*d*ln(g) +c3*s*(d*ln(g))^2 + bvmpo*t # no term by g for r_series = impo *(c0*g+c1*(g)^2)*(1+aimp*t) = v_mp * i_mp / p_mp_stc / g ; d=N *kb *(T+273.15)/q pr dc = voco +c8*s*d*ln(g) +bvoco*t v oc mostly empirical coefficients, no g term for r_series **PVGIS:** 6-7 param = $k_0 + k_1 + \ln(g) + k_2 + \ln(g)^2 + k_3 + t_k + k_4 + t + \ln(g) + k_5 + t + \ln(g)^2 + k_6 + t^2$ Bi-lin: just linear interpolation and extrapolation to any matrix

TTING BY MODELS

AND FIT PARAMETER (=fit, \uparrow overestimate, \downarrow underestimate) D) Bi-Linear B) SAPM) PVGIS /14+ 0.2 - 0.6 >0.6 <0.2 0.2 - 0.6 >0.6 <0.2 0.2 - 0.6 >0.6 <0.2 0.2 - 0.6 >0.6 fits noise dc FOR 9 MODULES) 0.32% n/a 0.17% 0.40% 0.09% 0.09% n/a 0.05% **ICE** Residuals depend on g Residuals depend on g No coefficients ow improved Residuals vary by module Poor fit to noisy data Overestimates high g thogonal coeffs np coeffs Good temp coeffs **Unphysical fits** Poor with extrapolated

Non-linear temp coeffs

Can't fit very dense matrix

