
To be presented at WCPEC8 in Milan Sep 2022

ADDING THE MLFM TO PVPMC/PVLIB

Steve Ransome1 and Juergen Sutterlueti2
1Steve Ransome Consulting Ltd, #99 KT2 6AF, U.K. mailto:steve@steveransome.com

2Gantner Instruments GmbH, 6780 Schruns, Austria

ABSTRACT: PVPMC/PVLIB is a global collaborative project headed by Sandia to develop a verified open-source PV

modelling library in python. The MLFM (Mechanistic Loss Factors Model) combines the Loss Factors Model LFM

(orthogonal, normalised loss calculations from MPPT measurements, iv curves or IEC 61853-like matrices) with the

Mechanistic Performance Model MPM (robust, orthogonal, normalised fitting coefficients to LFM losses). The MLFM
is being added to PVLIB, this paper describes the new functionality as shown by these models and how to interpret the

graphs and datafits. This paper also describes some of the procedures used to add code to PVLIB and aims to encourage

others to submit their own PV modelling code following PVLIB’s styles, nomenclature, naming conventions,

formatting, guidelines, designs, tests etc.
Keywords: Energy Rating; Energy Performance; Modelling

1 INTRODUCTION

The MLFM equations and procedures have proven

accurate and useful in PV module measurement

characterization, identifying performance limits and loss
mechanisms, deriving performance and temperature

coefficients, analyzing degradation rates and causes and/or

seasonal annealing, and comparing fit accuracies with

other common models [1][2][3].
Their functionality is now being added to PVLIB

which is the industry leading python open-source

modelling library.

MLFM modelling algorithms can be used with
existing PVLIB algorithms such as atmospheric data,

TMY, solar position and angle of incidence, tracking,

inverter modelling and the performance compared with

other models in PVLIB (such as the 1-diode model,
PVUSA and SAPM. [2])

The sequence, methods and procedures used to add

code has been documented to help others contribute.

MLFM algorithms have been added as a Jupiter
Notebook tutorial 'mlfm.ipynb' with a library file

'mlfm.py' to PVLIB The code is available as a

downloadable python tutorial mlfm.ipynb in PVLIB[].

Three sample data files contain either indoor
measurements (CFV IEC 61853) or outdoor (NREL and

Gantner Instruments) with 4 or 6 datapoints.

A flow chart of the mlfm procedures added to PVLIB

including graphs as from the tutorial is shown in figure 1.
Each box is identified by a letter [A] to [K] for later

discussion in the paper.

Figure 1: MLFM Flow chart of methodology and graphs being added to PVLIB

2 FURTHER DETAILS

The Loss Factors Model derives meaningful,

orthogonal, and normalised loss factors from the shape of
IV curves compared with reference STC values as

mailto:steve@steveransome.com

To be presented at WCPEC8 in Milan Sep 2022

illustrated in figure 2.

These coefficients show the magnitude of losses

attributable to each of the factors i_sc to v_oc.
The number of normalised loss factors depends on

whether measurements of iv parameters include r_sc and

r_oc slopes (1/dI/dV at i_sc or v_oc respectively).

The product of the loss coefficients equation (1)

multiplies the datasheet module ref_p_mp point to

measured meas_pmp point using the equation for

pr_dc6 (with r_sc and r_oc as in a full iv curve) or pr_dc4

(without r_sc and r_oc e.g. as with an IEC 61853 matrix).
(Spectral and reflectivity vs. aoi are not included here).

Normalised LFM loss equation:

𝑝𝑟_𝑑𝑐𝑛 =
1

𝑟𝑒𝑓_𝑓𝑓
 × ∏ 𝑛𝑜𝑟𝑚_𝑙𝑓𝑚(𝑖)

𝑛
𝑖=1 (1)

Where:
norm_lfm(1..6)=

['i_sc','r_sc','i_ff','v_ff','r_oc','v_oc']

or
norm_lfm(1..4)=

['i_sc', 'i_mp', 'v_mp', 'v_oc']

Figure 2: Loss Factors model using 4 or 6 normalised
losses (plus optional temperature correction on v_oc) to

calculate to meas_p_mp from ref_p_mp.

The names and standard LFM colours of the losses are

listed in table I.

Table I: LFM_6 and LFM_4 parameters and colours
(with optional temperature correction on v_oc).

LFM_6

e.g. IV curves

(with r_sc and r_oc)

LFM_4

e.g. IEC 61853 matrix

(no r_sc, no r_oc)

Param Colour # Param Colour

Ref Lossless = Ref Lossless =

* 1/ref_ff * 1/ref_ff

i_sc Purple i_sc Purple

r_oc Orange
i_mp Green

i_ff Lime

v_ff Cyan v_mp
Blue

r_oc Pink

v_oc(_t) Brown v_oc(_t) Brown
(t_corr) Red (t_corr) Red

 Meas = Pr_dc Meas = Pr_dc

3 MLFM PROCEDURES AND GRAPHS

Each box and graph from figure 1 is identified by letter

[A] to [K] and is described with some python code below.

Sample python code from pvlib is included but its
whitespace (tabbing) may have been modified for clarity.

Note: The code within pvlib is correctly formatted.

2.1 [A] ‘Import measurement data → meas’

The MLFM analysis process imports measured

weather and iv point or slope data “-1/(di/dv)” from csv

files into a dataframe ‘dmeas’ with the following essential

variable names which follow the pvlib naming convention

where possible.

Optional parameters such as ‘temp_air’ can be

included but aren’t analysed as standard.

Python code [A]

dmeas :

essential measured values

[unit] # comment

weather

 poa_global [W/m^2]

 temp_module [C]

 wind_speed [ms^-1] # 0 if indoor

iv points

 i_sc [A]

 v_oc [V]

 i_mp [A]

 v_mp [V]

 p_mp [W] # p_mp = i_mp * v_mp

optional

 r_sc [Ohm] #-1/IVslope@Isc

 r_oc [Ohm] #-1/IVslope@Voc

Three sample data sources (Gantner 6 parameter and

NREL 4 parameter outdoor plus an indoor CFV Matrix 4

parameter) are included but more can easily be added in

the required meas csv format above.

2.2 [B] ‘Get reference stc values → ref’

STC Reference data ‘ref’ (from datasheets) is

imported for the module chosen in (A) again following
pvlib naming conventions.

Python code [B]

ref :

Essential Reference values at STC.

[unit] # comment

electrical

 i_sc [A]

 i_mp [A]

 v_mp [V]

 v_oc [V]

 p_mp [W] # = i_mp * v_mp

temperature coefficients

 gamma_p_mp [1/C] # pmp temp. coeff.

 beta_v_oc [1/C] # voc temp. coeff.

 alpha_i_sc [1/C] # isc temp. coeff.

2.3 [C] ‘Calculate multiplicative normalised losses →

norm’

Normalised multiplicative losses are calculated from
meas and ref using equation (1) for either LFM_6 or

LFM_4 parameter measurements.

Voltage values are normalised as ‘norm=meas/ref’,

Current values are normalised as ‘norm=
meas/ref/irradiance_suns’.

Further equations are used to derive normalised losses

from the r_sc and r_oc using i_r and v_r which is the
intercept of the r_sc and r_oc lines in figure 2.

Python code [C]

def mlfm_meas_to_norm(dmeas, ref):

To be presented at WCPEC8 in Milan Sep 2022

Convert measured power, current and voltage to

normalized values e.g.

dnorm['i_sc'] = dmeas['i_sc'] \

 / (dmeas['poa_global'] / G_STC) / ref['i_sc']

dnorm['v_oc'] = dmeas['v_oc'] / ref['v_oc']

where

i_r = ((i_sc*r_sc - v_oc)/(r_sc - r_oc))

v_r = ((r_sc*(v_oc - i_sc*r_oc)/(r_sc - r_oc)))

if lfm_6: # full iv curve with r_sc and r_oc

 # calculate normalised resistances r_sc, r_oc

 dnorm['r_sc'] = i_r / dmeas['i_sc']

 dnorm['r_oc'] = v_r / dmeas['v_oc']

 # calculate remaining fill factor losses

 # partitioned to i_ff, v_ff

 dnorm['i_ff'] = dmeas['i_mp'] / i_r

 dnorm['v_ff'] = dmeas['v_mp'] / v_r

if lfm_4: # matrix no r_sc or r_oc

 dnorm['i_mp'] = dmeas['i_mp'] / dmeas['i_sc']

 dnorm['v_mp'] = dmeas['v_mp'] / dmeas['v_oc']

…

return dnorm

2.4 [D] ‘Graph of normalised lfm : loss() vs.

poa_global(→)’

Figure 3 illustrates the 6 different normalised loss
parameters for a cSi module at Gantner Instruments’ OTF

in Tempe, AZ vs. poa_global.

Loss parameters i_ff, v_ff, r_sc and r_oc are all quite

narrow and smooth indicating good module behaviour and
well measured. The LFM analysis can often identify

temperature coefficients of terms such as r_sc and r_oc

[JAPAN Tues]
i_sc is a little more widely scattered (as it has

uncorrected soiling and spectral losses, particularly at

lower light levels where aoi/reflectivity differ from clear

skies to diffuse).
Because v_oc is quite temperature sensitive it is

usually better plotted temperature corrected by beta_v_oc.

Python code [D]

dnorm[‘v_oc_temp_corr’] = dnorm[‘v_oc’] \

 * (1 – ref[‘beta_v_oc’] \

 * (dmeas[‘temp_module’] – T_STC))

Figure 3: Normalised LFM_6 losses() vs.

Irradiance(→) typical c-Si module at Tempe, AZ.

Pr_dc is the product of all these loss parameters as in
equation (1). Therefore if any of the coefficients change

with irradiance or temperature it will affect the overall

pr_dc performance and can be quantified as in figure 3 .

• Low light pr_dc drop() is caused by r_sc (r_shunt)

and v_oc (which depends on ln(poa_global)).

• High light pr_dc drop() is caused by r_oc (r_series).

• Coefficients that are almost ‘flat’ with irradiance =
i_ff, v_ff.

2.5 [E] ‘Perform sanity checks on data’

Normalised data should be checked for missing values,

errors, and outliers.

Both normalised limits (e.g. ‘0.7 < pr_dc < 1.3’) and

standard deviations (e.g. < 3σ) can be used for outdoor
data, whereas normalised indoor matrix measurements

would likely be remeasured if there were any outliers.

The limits needed will depend on the accuracy and

variability of the measurements.

Python code [E]

remove values outside limits e.g. <0.5 or >1.5

norm = norm[((norm['pr_dc'] > 0.5) &

 (norm['pr_dc'] < 1.5))]

remove all mlfm values outside x~3 stdevs

if qty_mlfm_vars == 6:

 stdevs = 3

 # remove data > x stdevs

 for lfm in ('i_sc','r_sc','i_ff',

 'v_ff','r_oc','v_oc'):

 norm = norm[

 ((norm[lfm] - norm[lfm].mean()) /

 norm[lfm].std()).abs() < stdevs

]

2.6 [F] ‘Calculate stacked losses → stack (subtractive)’

Plots of multiplicative LFM losses (1) as shown in

figure 3 overlap, sometimes it’s difficult to discern

relative losses and changes.

It can be useful to mathematically transform them to
subtractive losses which can be represented more easily on

a stack plot as in figs 4 and 5 using equation (2).

Python code [F]

def mlfm_norm_to_stack(dnorm, fill_factor):

’’’Converts normalised values to stacked

 subtractive normalized losses.

 Normalized values can reveal losses via

 scatter plots vs. irradiance or temperature.

 Stacked subtractive losses can show relative

 loss proportions.

 Stacked losses partition the difference

 between the normalized power and the power

 that corresponds to the reference fill

 factor. ’’’

…

return dstack

Stack loss equation

𝑝𝑟_𝑑𝑐𝑛 =
1

𝑓𝑓
 − ∑ 𝑠𝑡𝑎𝑐𝑘_𝑙𝑓𝑚(𝑖)

𝑛
𝑖=1 (2)

Where:
stack_lfm(1..6) =

 ['i_sc','r_sc','i_ff','v_ff','r_oc','v_oc']

or
stack_lfm(1..4) =

 ['i_sc', 'i_mp', 'v_mp', 'v_oc']

2.7 [G] ‘Plot stacked subtractive lfm : loss()

To be presented at WCPEC8 in Milan Sep 2022

vs. time(outdoor) or measurement(indoor)(→)’

Stacked losses for 6 and 4 parameters are indicated by
their colours from top to bottom as listed in Table I. The

height of each loss is proportional to its magnitude. Loss

colours are from Table I.

Losses fall from from 1/ref_ff down to pr_dc.

Irradiance (green) and temp_mod/100 (red) are shown

both on the right y axis.

Figure 4 (left) plots one clear day a month (Jan – Dec

for a year) for a Gantner c-Si module in Tempe AZ. There
are six independent losses plus temperature corrections in

a stacked format from a lossless limit 1/ref_ff (top),

subtracting each loss value in turn until it reaches pr_dc

(bottom).

Python code [G]

Stacked loss values(y) vs. date and time

#(or matrix measurement)(x)

fig_stack = plot_mlfm_stack(

 dmeas=meas, dnorm=norm, dstack=stack,

 # dataframes measurements

 xaxis_labels=12,

 # show #x_labels or 0=show all

 is_i_sc_self_ref=False,

 # is i_sc self referenced?

 Is_v_oc_temp_module_corr=True

 # is v_oc temp corrected?

)

If IV curves are not available to find r_sc and r_oc

(e.g. just indoor matrices IEC 61853) then similar
stacked loss plots with just 4 parameters can be

generated.

Figure 4(right) plots losses for LFM_4(i_sc, i_mp,

v_mp, v_oc_t, temperature correction) for a cSi module
IEC 61853 matrix measured by CFV.

LFM_6 – Outdoor c-Si Gantner Instruments LFM_4 – IEC 61853 Matrix c-Si CFV

Figure 4: Stacked loss LFM_6 outdoor (left) and LFM_4 iec 61853 (right) plots for cSi modules

.
Explanations for figure 4 left:

• 1 clear day per month Jan to Dec Tempe, AZ

• Lowest pr_dc at middle of days due to highest

temperature and roc losses (~r_series).

• Lowest pr_dc summer months due to temperature.

• This module has much higher r_oc (~r_series) loss than

r_sc (~ r_shunt).

• Isc loss is non-zero, cause is soiling and spectral?

Explanations for figure 4 right:

• IEC 61853 matrix measurements indoor

• i_sc loss (purple) ~0 (measured at AM1.5, aoi=0 and soil

= 0 so no corrections are needed).

• i_mp loss is almost constant, less than v_mp.

• v_mp increases with temp. and irradiance (→ ~r_series).

• v_oc loss worst at low light (left of each stack).

• temp_module losses worst at high temp. (right=75C).

2.8 [H] ‘Mechanistic fit to normalised losses’

A mechanistic performance model MPM [ref] is used
to fit any of the LFM parameter behaviours with irradiance

and module temperature (3).

This algorithm minimizes rmse using python’s

optimize.curve_fit.

𝒎𝒑𝒎 = 𝑐1 + 𝑐2 ∗ (𝑡𝑒𝑚𝑝_𝑚𝑜𝑑𝑢𝑙𝑒 − 25) + 𝑐3 ∗
𝑙𝑜𝑔10(𝑝𝑜𝑎_𝑔𝑙𝑜𝑏𝑎𝑙) + 𝑐4 ∗ 𝑝𝑜𝑎_𝑔𝑙𝑜𝑏𝑎𝑙 + 𝑐5 ∗ 𝑤𝑠 +
 𝑐6 / 𝑝𝑜𝑎_𝑔𝑙𝑜𝑏𝑎𝑙 (3)

Python code [H]

setup initial values and initial boundary

conditions

initial c1 c2 c3 c4 c5 c6<0

p_0 = (1.0, 0.01, 0.01, 0.01, 0.01, -0.01)

boundaries

bounds = ([-2, -2, -2, -2, -2, -2],

 [2, 2, 2, 2, 2, 0])

The mpm gives meaningful, normalised and
orthogonal coefficients unlike other models.

For indoor measurements c_5 (wind_speed) is 0, most

modules can be fitted with a c_6 =0 but if not, it must be

<0 as the boundary conditions constrict it.
Some typical example coefficients are given in table II

Table II : Typical MPM coefficients

Coeff Value Unit Comment
C_1 +106.8% Overall quality

C_2 -0.45% /K Temp. coeff. gamma

C_3 +0.48% Low light Voc. Rsh

C_4 -7.03% /(kW/m2) High light Rs

C_5 -0.063% /(ms-1) Windspeed

C_6 -1.54% *(kW/m2) Extra Low light

To be presented at WCPEC8 in Milan Sep 2022

2.9 [I] ‘Plot contour maps: pr_dc(colours) vs.

temp_mod() and poa_global(→)’

Figure 5 left shows the measured (left) vs. mpm fitted

(right) pr_dc per irradiance bin (100W/m2
→) and

temp_module bin(5C) from a Gantner Instruments cSi

module in Tempe, AZ.Figure 5 right gives the IEC 61853

Matrix by CFV.

Both show close MPM fits as there are close

similarities against temp_module(C) and
irradiance(W/m2

→).

Some of the test condition points are shown as the

Matrix measurement does not have linear irradiance and

temperature values.

Python code [I]

Measured vs. MPM Fitted vs. poa_global(→)

and temp_module()

contour_plot = plot_contourf(

 df=matr2,

 y_axis='temp_module',

 x_axis='poa_global',

 z_axis=mlfm_sel,

 title='matrix predicted ' + mlfm_meas_file,

 vmin=0.7,

 vmax=1.05,

 levels=9

 LFM_6 – Outdoor c-Si Gantner Instruments LFM_4 – IEC 61853 Matrix c-Si CFV

M
ea

su
re

d

M
P

M
 F

it
te

d

 Figure 5: Contour plots of averaged pr_dc measured (top) vs. MPM fitted (bottom) for LFM6 (left) and LFM4

(right). Note: HTC should be at 75C (off the top of most of graphs)

2.10 [J] ‘Plot residual fit heatmap: pr_dc ‘meas – fit’

vs. temp_mod(), irradiance (→)’

Figure 6 plots residuals '(fit – meas pr_dc)' against

irradiance (W/m2
→) and module temperature (C) bins

for LFM_6 (left) and LFM_4 (right).

Apart from some extreme outdoor weather conditions
i.e. the top and bottom of the weather distribution most

weather bins have the ‘meas – fit’ within ±-1% (light cyan

to light orange).

Note the fit to the indoor measurements is even better
at mostly ± 0.4%. The 50C lines is all overestimated a

little, it’s possible that this chart has just identified a slight

measurement inaccuracy at 50C as they are all ~+0.3%

rather than -0.1%. This will be investigated further.

Python code [J]

Residual MLFM fit heatmap(colours)

vs. poa_global(x), temp_module(y)

heatmap_plot = plot_heatmap(

 dnorm=norm,

 dmeas=meas,

 fit=mlfm_sel,

 y_axis='temp_module_bin',

 x_axis='poa_global_bin',

 z_axis='diff_' + mlfm_sel,

 title='residual ' + mlfm_meas_file

)

To be presented at WCPEC8 in Milan Sep 2022

LFM_6 – Outdoor c-Si Gantner Instruments LFM_4 – IEC 61853 Matrix c-Si CFV

Figure 6: Residual error heatmaps pr_dc ‘meas – fit’ for LFM6 (left) and LFM4 (right)

2.11 [K] ‘Scatter plot: norm pmp fit() vs. meas(→)’

Figure 7 gives the mpm fitted vs. measured normalised

p_mp (= meas_p_mp / ref_p_mp) with a 1:1 line)

indicating a very good fit for both LFM_6 and LFM_4.

Python code [K]

plot fit vs. measured,

include a 1:1 line

fit_plot = plot_fit(

 dmeas=meas,

 dnorm=norm,

 fit=mlfm_sel,

 title='fit ' + mlfm_meas_file

)

LFM_6 – Outdoor c-Si Gantner Instruments LFM_4 – IEC 61853 Matrix c-Si CFV

Figure 7: Scatter plot showing normalised p_mp fitted () vs. measured (→)

It is hoped that the mlfm can be put into pvlib soon. Please

see the pull [4] request and help if you can.

4. CONTRIBUTING

Table III summarises links and information on helping

adding code to PVLIB.

Table III: How to contribute to PVLIB

INFORMATION :

• Stack Overflow : http://stackoverflow.com/questions/tagged/pvlib
• Google groups : https://groups.google.com/forum/#!forum/pvlib-python

• GitHub issues : https://github.com/pvlib/pvlib-python/issues

http://stackoverflow.com/questions/tagged/pvlib
https://groups.google.com/forum/%23!forum/pvlib-python
https://github.com/pvlib/pvlib-python/issues

To be presented at WCPEC8 in Milan Sep 2022

• Pull requests : https://github.com/pvlib/pvlib-python/pulls

• Jupyter Notebook tutorials : https://github.com/pvlib/pvlib-python/tree/master/docs/tutorials

• Follow PEP8 : https://www.python.org/dev/peps/pep-0008/. (Max line length 79 chars)
• Add your project : https://github.com/pvlib/pvlib-python/wiki/Projects-and-publications-that-use-pvlib-python.

• Variables and Symbols : https://pvlib-python.readthedocs.io/en/stable/user_guide/variables_style_rules.html#variables-style-rules

• Documentation style : https://pvlib-python.readthedocs.io/en/stable/contributing.html#documentation

Coding :

• PVSystem and Location classes provide convenience wrappers around the core PVLIB functions.

• Remove logging calls and print statements.

• Include documentation and Comprehensive unit tests
• Functions must return the desired output for all inputs see https://github.com/pvlib/pvlib-python/issues/394

PVPMC : https://pvpmc.sandia.gov/

Document Library : https://pvpmc.sandia.gov/resources-and-events/documents/
Code of conduct : https://github.com/pvlib/pvlib-python/blob/master/CODE_OF_CONDUCT.md

Cite this paper: https://doi.org/10.21105/joss.00884

5. Acknowledgements

 Gantner Instruments https://www.gantner-

instruments.com/ and NREL for outdoor data,

CFV for indoor data

https://pvpmc.sandia.gov/download/7701/

6. CONCLUSIONS

The MLFM is being added to PVLIB python

The robust modelling of the LFM and MPM have been

described

These are proving useful in industrial projects from
single module OTFs to large power plants

Information has been given on how other coders can

contribute their projects

7. REFERENCES

[1] "Modelling of PV modules and systems" VIRTUAL
PVCOST Training School 2021 Romania

http://www.steveransome.com/pubs/2021_07_PVCO

ST_Romania_Ransome_210706t11tobepresented.pdf

[2] “Benchmarking PV performance models with high
quality IEC 61853 Matrix measurements (Bilinear

interpolation, SAPM, PVGIS, MLFM and 1-diode)”

PVSC 49 Jun 2022 Philadelphia, USA

http://www.steveransome.com/pubs/2206_PVSC49_
philadelphia_4_presented.pdf

[3] “Improving IEC 61853 Energy Yield Modelling with

LFM and MPM models” 2022 PVPMC Salt Lake

City USA https://pvpmc.sandia.gov/download/8494/
[4] MLFM pull request https://github.com/pvlib/pvlib-

python/pull/1354

[5] "Quantifying and analysing the variability of PV
module resistances Rsc and Roc to understand and

optimise kWh/kWp modelling" Asian PVSEC-27

2017 Shiga Japan.

http://www.steveransome.com/PUBS/1711_7TuPo.225_2
7PVEC_Ransome_3.pdf

[6] William F. Holmgren, Clifford W. Hansen, and Mark

A. Mikofski. “pvlib python: a python package for

modeling solar energy systems.” Journal of Open
Source Software, 3(29), 884, (2018).

https://doi.org/10.21105/joss.00884

https://github.com/pvlib/pvlib-python/pulls
https://github.com/pvlib/pvlib-python/tree/master/docs/tutorials
https://www.python.org/dev/peps/pep-0008/
https://github.com/pvlib/pvlib-python/wiki/Projects-and-publications-that-use-pvlib-python
https://pvlib-python.readthedocs.io/en/stable/user_guide/variables_style_rules.html%23variables-style-rules
https://pvlib-python.readthedocs.io/en/stable/contributing.html%23documentation
https://github.com/pvlib/pvlib-python/issues/394
https://pvpmc.sandia.gov/
https://pvpmc.sandia.gov/resources-and-events/documents/
https://github.com/pvlib/pvlib-python/blob/master/CODE_OF_CONDUCT.md
https://doi.org/10.21105/joss.00884
https://www.gantner-instruments.com/
https://www.gantner-instruments.com/
https://pvpmc.sandia.gov/download/7701/
http://www.steveransome.com/pubs/2021_07_PVCOST_Romania_Ransome_210706t11tobepresented.pdf
http://www.steveransome.com/pubs/2021_07_PVCOST_Romania_Ransome_210706t11tobepresented.pdf
http://www.steveransome.com/pubs/2206_PVSC49_philadelphia_4_presented.pdf
http://www.steveransome.com/pubs/2206_PVSC49_philadelphia_4_presented.pdf
https://pvpmc.sandia.gov/download/8494/
https://github.com/pvlib/pvlib-python/pull/1354
https://github.com/pvlib/pvlib-python/pull/1354
http://www.steveransome.com/PUBS/1711_7TuPo.225_27PVEC_Ransome_3.pdf
http://www.steveransome.com/PUBS/1711_7TuPo.225_27PVEC_Ransome_3.pdf
https://doi.org/10.21105/joss.00884

