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ABSTRACT: PVPMC/PVLIB is a global collaborative project headed by Sandia to develop a verified open-source PV 

modelling library in python. The MLFM (Mechanistic Loss Factors Model) combines the Loss Factors Model LFM 

(orthogonal, normalised loss calculations from MPPT measurements, iv curves or IEC 61853-like matrices) with the 

Mechanistic Performance Model MPM (robust, orthogonal, normalised fitting coefficients to LFM losses). The MLFM 
is being added to PVLIB, this paper describes the new functionality as shown by these models and how to interpret the 

graphs and datafits. This paper also describes some of the procedures used to add code to PVLIB and aims to encourage 

others to submit their own PV modelling code following PVLIB’s styles, nomenclature, naming conventions, 

formatting, guidelines, designs, tests etc.  
Keywords:  Energy Rating; Energy Performance; Modelling 

 

 

1 INTRODUCTION 
 

The MLFM equations and procedures have proven 

accurate and useful in PV module measurement 

characterization, identifying performance limits and loss 
mechanisms, deriving performance and temperature 

coefficients, analyzing degradation rates and causes and/or 

seasonal annealing, and comparing fit accuracies with 

other common models [1][2][3]. 
Their functionality is now being added to PVLIB 

which is the industry leading python open-source 

modelling library.  

MLFM modelling algorithms can be used with 
existing PVLIB algorithms such as atmospheric data, 

TMY, solar position and angle of incidence, tracking, 

inverter modelling and the performance compared with  

other models in PVLIB (such as the 1-diode model, 
PVUSA and SAPM. [2])  

The sequence, methods and procedures used to add 

code has been documented to help others contribute. 

MLFM algorithms have been added as a Jupiter 
Notebook tutorial 'mlfm.ipynb' with a library file 

'mlfm.py' to PVLIB The code is available as a 

downloadable python tutorial mlfm.ipynb in PVLIB[]. 

Three sample data files contain either indoor 
measurements (CFV IEC 61853) or outdoor (NREL and 

Gantner Instruments) with 4 or 6 datapoints. 

A flow chart of the mlfm procedures added to PVLIB 

including graphs as from the tutorial is shown in figure 1.  
Each box is identified by a letter [A] to [K] for later 

discussion in the paper. 

 
 

 
Figure 1: MLFM Flow chart of methodology and graphs being added to PVLIB 

 
 

2 FURTHER DETAILS 

 

The Loss Factors Model derives meaningful, 

orthogonal, and normalised loss factors from the shape of 
IV curves compared with reference STC values as 
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illustrated in figure 2.  

These coefficients show the magnitude of losses 

attributable to each of the factors i_sc to v_oc. 
The number of normalised loss factors depends on 

whether measurements of iv parameters include r_sc and 

r_oc slopes (1/dI/dV at i_sc or v_oc respectively).  

The product of the loss coefficients equation (1) 

multiplies the datasheet module ref_p_mp point  to 

measured meas_pmp point  using the equation for 

pr_dc6 (with r_sc and r_oc as in a full iv curve) or pr_dc4 

(without r_sc and r_oc e.g. as with an IEC 61853 matrix). 
(Spectral and reflectivity vs. aoi are not included here). 

 

Normalised LFM loss equation: 

𝑝𝑟_𝑑𝑐𝑛  =
1

𝑟𝑒𝑓_𝑓𝑓
 × ∏ 𝑛𝑜𝑟𝑚_𝑙𝑓𝑚(𝑖)

𝑛
𝑖=1  (1) 

 

Where: 
norm_lfm(1..6)= 

['i_sc','r_sc','i_ff','v_ff','r_oc','v_oc'] 

or 
norm_lfm(1..4)= 

['i_sc',    'i_mp',       'v_mp',   'v_oc'] 

 

 
Figure 2: Loss Factors model using 4 or 6 normalised 
losses (plus optional temperature correction on v_oc) to 

calculate to meas_p_mp from ref_p_mp.  

 
The names and standard LFM colours of the losses are 

listed in table I.  

 

Table I: LFM_6 and LFM_4 parameters and colours 
(with optional temperature correction on v_oc). 

 

LFM_6  

e.g. IV curves 

(with r_sc and r_oc) 

LFM_4  

e.g. IEC 61853 matrix 

(no r_sc, no r_oc) 

# Param Colour  # Param Colour  

Ref Lossless =  Ref Lossless =  

* 1/ref_ff * 1/ref_ff 

i_sc Purple i_sc Purple 

r_oc Orange 
i_mp Green 

i_ff Lime 

v_ff Cyan v_mp 
Blue 

r_oc Pink 

v_oc(_t) Brown v_oc(_t) Brown 
(t_corr) Red (t_corr) Red 

 Meas = Pr_dc  Meas = Pr_dc 

 

3 MLFM PROCEDURES AND GRAPHS 
 

Each box and graph from figure 1 is identified by letter 

[A] to [K] and is described with some python code below.  

Sample python code from pvlib is included but its 
whitespace (tabbing) may have been modified for clarity.  

Note: The code within pvlib is correctly formatted. 

 

2.1 [A] ‘Import measurement data → meas’ 
 

The MLFM analysis process imports measured 

weather and iv point or slope data “-1/(di/dv)” from csv 

files into a dataframe ‘dmeas’ with the following essential 

variable names which follow the pvlib naming convention 

where possible.  

Optional parameters such as ‘temp_air’ can be 

included but aren’t analysed as standard. 
 

# Python code [A] 

 

dmeas : 

# essential measured values 

#                [unit]  # comment   

# weather 

    poa_global   [W/m^2] 

    temp_module  [C] 

    wind_speed   [ms^-1] # 0 if indoor 

# iv points 

    i_sc         [A] 

    v_oc         [V] 

    i_mp         [A] 

    v_mp         [V] 

    p_mp         [W]   # p_mp = i_mp * v_mp 

# optional 

    r_sc         [Ohm] #-1/IVslope@Isc 

    r_oc         [Ohm] #-1/IVslope@Voc 

 

Three sample data sources (Gantner 6 parameter and 

NREL 4 parameter outdoor plus an indoor CFV Matrix 4 

parameter) are included but more can easily be added in 

the required meas csv format above. 

 
2.2 [B] ‘Get reference stc values → ref’ 

 

STC Reference data ‘ref’ (from datasheets) is 

imported for the module chosen in (A) again following 
pvlib naming conventions. 

 
# Python code [B] 

 

ref : 

# Essential Reference values at STC. 

#                [unit]  # comment 

# electrical  

    i_sc         [A] 

    i_mp         [A] 

    v_mp         [V] 

    v_oc         [V] 

    p_mp         [W]     # = i_mp * v_mp 

# temperature coefficients 

    gamma_p_mp   [1/C]   # pmp temp. coeff.  

    beta_v_oc    [1/C]   # voc temp. coeff. 

    alpha_i_sc   [1/C]   # isc temp. coeff. 

 
2.3 [C] ‘Calculate multiplicative normalised losses → 

norm’ 

 

Normalised multiplicative losses are calculated from 
meas and ref using equation (1) for either LFM_6 or 

LFM_4 parameter measurements.  

Voltage values are normalised as ‘norm=meas/ref’, 

Current values are normalised as ‘norm= 
meas/ref/irradiance_suns’. 

Further equations are used to derive normalised losses 

from the r_sc and r_oc using i_r and v_r which is the 
intercept of the r_sc and r_oc lines in figure 2.  

 
# Python code [C] 

 

def mlfm_meas_to_norm(dmeas, ref): 
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# Convert measured power, current and voltage to  

# normalized values e.g. 

 

dnorm['i_sc'] = dmeas['i_sc'] \ 

    / (dmeas['poa_global'] / G_STC) / ref['i_sc'] 

 

dnorm['v_oc'] = dmeas['v_oc'] / ref['v_oc'] 

 

# where  

# i_r = ((i_sc*r_sc - v_oc)/(r_sc - r_oc)) 

# v_r = ((r_sc*(v_oc - i_sc*r_oc)/(r_sc - r_oc))) 

 

if lfm_6: # full iv curve with r_sc and r_oc 

    # calculate normalised resistances r_sc, r_oc 

 

    dnorm['r_sc'] = i_r / dmeas['i_sc']  

    dnorm['r_oc'] = v_r / dmeas['v_oc'] 

 

    # calculate remaining fill factor losses 

    # partitioned to i_ff, v_ff 

 

    dnorm['i_ff'] = dmeas['i_mp'] / i_r 

    dnorm['v_ff'] = dmeas['v_mp'] / v_r 

 

if lfm_4: # matrix no r_sc or r_oc 

    dnorm['i_mp'] = dmeas['i_mp'] / dmeas['i_sc'] 

    dnorm['v_mp'] = dmeas['v_mp'] / dmeas['v_oc'] 

… 

return dnorm 

 
2.4 [D] ‘Graph of normalised lfm : loss() vs. 

poa_global(→)’ 

 

Figure 3 illustrates the 6 different normalised loss 
parameters for a cSi module at Gantner Instruments’ OTF 

in Tempe, AZ vs. poa_global. 

Loss parameters i_ff, v_ff, r_sc and r_oc are all quite 

narrow and smooth indicating good module behaviour and 
well measured. The LFM analysis can often identify 

temperature coefficients of terms such as r_sc and r_oc 

[JAPAN Tues] 
i_sc is a little more widely scattered (as it has 

uncorrected soiling and spectral losses, particularly at 

lower light levels where aoi/reflectivity differ from clear 

skies to diffuse). 
Because v_oc is quite temperature sensitive it is 

usually better plotted temperature corrected by beta_v_oc. 

 
# Python code [D] 

 

dnorm[‘v_oc_temp_corr’] = dnorm[‘v_oc’] \ 

    * (1 – ref[‘beta_v_oc’] \ 

    * (dmeas[‘temp_module’] – T_STC)) 

 

 

 
Figure 3: Normalised LFM_6 losses() vs. 

Irradiance(→) typical c-Si module at Tempe, AZ.  

 

Pr_dc is the product of all these loss parameters as in 
equation (1). Therefore if any of the coefficients change 

with irradiance or temperature it will affect the overall 

pr_dc performance and can be quantified as in figure 3 . 

• Low light pr_dc drop() is caused by r_sc (r_shunt) 

and v_oc (which depends on ln(poa_global) ). 

• High light pr_dc drop() is caused by r_oc (r_series). 

• Coefficients that are almost ‘flat’ with irradiance = 
i_ff,  v_ff. 

 

2.5 [E] ‘Perform sanity checks on data’ 

 

Normalised data should be checked for missing values, 

errors, and outliers.  

Both normalised limits (e.g. ‘0.7 < pr_dc < 1.3’) and 

standard deviations (e.g. < 3σ) can be used for outdoor 
data, whereas normalised indoor matrix measurements 

would likely be remeasured if there were any outliers. 

The limits needed will depend on the accuracy and 

variability of the measurements. 
 
# Python code [E] 

 

# remove values outside limits e.g. <0.5 or >1.5 

 

norm = norm[((norm['pr_dc'] > 0.5) &  

             (norm['pr_dc'] < 1.5))] 

 

# remove all mlfm values outside x~3 stdevs 

if qty_mlfm_vars == 6: 

    stdevs = 3 

    # remove data > x stdevs 

    for lfm in ('i_sc','r_sc','i_ff', 

                'v_ff','r_oc','v_oc'): 

        norm = norm[ 

            ((norm[lfm] - norm[lfm].mean()) / 

                 norm[lfm].std()).abs() < stdevs 

        ] 

 

2.6 [F] ‘Calculate stacked losses → stack (subtractive)’ 

 
Plots of multiplicative LFM losses (1) as shown in 

figure 3 overlap,  sometimes it’s difficult to discern 

relative losses and changes. 

It can be useful to mathematically transform them to 
subtractive losses which can be represented more easily on 

a stack plot as in figs 4 and 5 using equation (2).  

 
# Python code [F] 

 

def mlfm_norm_to_stack(dnorm, fill_factor): 

’’’Converts normalised values to stacked 

    subtractive normalized losses. 

    Normalized values can reveal losses via 

    scatter plots vs. irradiance or temperature. 

    Stacked subtractive losses can show relative 

    loss proportions.  

    Stacked losses partition the difference 

    between the normalized power and the power 

    that corresponds to the reference fill 

    factor. ’’’ 

… 

return dstack 

 

Stack loss equation 

𝑝𝑟_𝑑𝑐𝑛  =
1

𝑓𝑓
 − ∑ 𝑠𝑡𝑎𝑐𝑘_𝑙𝑓𝑚(𝑖)

𝑛
𝑖=1  (2) 

 

Where: 
stack_lfm(1..6) =  

    ['i_sc','r_sc','i_ff','v_ff','r_oc','v_oc'] 

or 
stack_lfm(1..4) =  

    ['i_sc',    'i_mp',       'v_mp',   'v_oc'] 

 

 
2.7 [G] ‘Plot stacked subtractive lfm : loss()  
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vs. time(outdoor) or measurement(indoor)(→)’ 

 

Stacked losses for 6 and 4 parameters are indicated by 
their colours from top to bottom as listed in Table I. The 

height of each loss is proportional to its magnitude. Loss 

colours are from Table I.  

Losses fall from from 1/ref_ff down to pr_dc. 

Irradiance (green) and temp_mod/100 (red) are shown 

both on the right y axis. 

Figure 4 (left) plots one clear day a month (Jan – Dec 

for a year) for a Gantner c-Si module in Tempe AZ. There 
are six independent losses plus temperature corrections in 

a stacked format from a lossless limit 1/ref_ff (top), 

subtracting each loss value in turn until it reaches pr_dc 

(bottom).  
 

# Python code [G] 

 

# Stacked loss values(y) vs. date and time  

#(or matrix measurement)(x) 

 

fig_stack = plot_mlfm_stack( 

    dmeas=meas, dnorm=norm, dstack=stack,  

         # dataframes measurements 

    xaxis_labels=12,                       

         # show #x_labels or 0=show all 

    is_i_sc_self_ref=False,                

         # is i_sc self referenced? 

    Is_v_oc_temp_module_corr=True          

         # is v_oc temp corrected? 

) 

 

If IV curves are not available to find r_sc and r_oc 

(e.g. just indoor matrices IEC 61853) then similar 
stacked loss plots with just 4 parameters can be 

generated. 

Figure 4(right) plots losses for LFM_4(i_sc, i_mp, 

v_mp, v_oc_t, temperature correction) for a cSi module 
IEC 61853 matrix measured by CFV. 

 

LFM_6 – Outdoor c-Si Gantner Instruments  LFM_4 – IEC 61853 Matrix c-Si CFV 

 
 

Figure 4: Stacked loss LFM_6 outdoor (left) and LFM_4 iec 61853 (right) plots for cSi modules 

.  
Explanations for figure 4 left: 

• 1 clear day per month Jan to Dec Tempe, AZ 

• Lowest pr_dc at middle of days due to highest 

temperature and roc losses (~r_series). 

• Lowest pr_dc summer months due to temperature.  

• This module has much higher r_oc (~r_series) loss than 

r_sc (~ r_shunt). 

• Isc loss is non-zero, cause is soiling and spectral?  

Explanations for figure 4 right: 

• IEC 61853 matrix measurements indoor 

• i_sc loss (purple) ~0 (measured at AM1.5, aoi=0 and soil 

= 0 so no corrections are needed).  

• i_mp loss is almost constant, less than v_mp.  

• v_mp increases with temp. and irradiance (→ ~r_series).  

• v_oc loss worst at low light (left of each stack).  

• temp_module losses worst at high temp. (right=75C). 

 
 

2.8 [H] ‘Mechanistic fit to normalised losses’ 

 

A mechanistic performance model MPM [ref] is used 
to fit any of the LFM parameter behaviours with irradiance 

and module temperature (3). 

This algorithm minimizes rmse using python’s 

optimize.curve_fit. 
 

𝒎𝒑𝒎 =  𝑐1  + 𝑐2 ∗ (𝑡𝑒𝑚𝑝_𝑚𝑜𝑑𝑢𝑙𝑒 −  25) + 𝑐3 ∗
𝑙𝑜𝑔10(𝑝𝑜𝑎_𝑔𝑙𝑜𝑏𝑎𝑙) + 𝑐4 ∗  𝑝𝑜𝑎_𝑔𝑙𝑜𝑏𝑎𝑙 + 𝑐5 ∗ 𝑤𝑠 +
 𝑐6 / 𝑝𝑜𝑎_𝑔𝑙𝑜𝑏𝑎𝑙  (3) 
 
# Python code [H] 

 

# setup initial values and initial boundary  

# conditions 

 

# initial   c1    c2    c3    c4    c5   c6<0 

p_0      = (1.0, 0.01, 0.01, 0.01, 0.01, -0.01) 

# boundaries 

bounds = ([ -2,   -2,   -2,   -2,   -2,    -2], 

          [  2,    2,    2,    2,    2,     0]) 

 

The mpm gives meaningful, normalised and 
orthogonal coefficients unlike other models.  

For indoor measurements c_5 (wind_speed) is 0, most 

modules can be fitted with a c_6 =0 but if not, it must be 

<0 as the boundary conditions constrict it. 
Some typical example coefficients are given in table II 

 

Table II : Typical MPM coefficients  

 

Coeff Value Unit Comment 
C_1  +106.8%  Overall quality 

C_2  -0.45%  /K Temp. coeff. gamma 

C_3  +0.48%   Low light Voc. Rsh 

C_4  -7.03%  /(kW/m2) High light Rs 

C_5  -0.063%  /(ms-1) Windspeed 

C_6  -1.54%  *(kW/m2) Extra Low light 
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2.9 [I] ‘Plot contour maps: pr_dc(colours) vs. 

temp_mod() and poa_global(→)’ 

 

Figure 5 left shows the measured (left) vs. mpm fitted 

(right) pr_dc per irradiance bin (100W/m2
→) and 

temp_module bin(5C) from a Gantner Instruments cSi 

module in Tempe, AZ.Figure 5 right gives the IEC 61853 

Matrix by CFV. 

Both show close MPM fits as there are close 

similarities against temp_module(C) and 
irradiance(W/m2

→). 

Some of the test condition points are shown as the 

Matrix measurement does not have linear irradiance and 

temperature values. 

 
# Python code [I] 

# Measured vs. MPM Fitted vs. poa_global(→) 

# and temp_module()  

contour_plot = plot_contourf( 

    df=matr2, 

    y_axis='temp_module', 

    x_axis='poa_global', 

    z_axis=mlfm_sel, 

    title='matrix predicted ' + mlfm_meas_file, 

    vmin=0.7, 

    vmax=1.05, 

    levels=9 

 

 
 LFM_6 – Outdoor c-Si Gantner Instruments  LFM_4 – IEC 61853 Matrix c-Si CFV  
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 Figure 5: Contour plots of averaged pr_dc measured (top) vs. MPM fitted (bottom) for LFM6 (left) and LFM4 

(right). Note: HTC should be at 75C (off the top of most of graphs) 

 
 

2.10 [J] ‘Plot residual fit heatmap: pr_dc ‘meas – fit’ 

vs. temp_mod(), irradiance (→)’ 

 

Figure 6 plots residuals '(fit – meas pr_dc)' against 

irradiance (W/m2
→) and module temperature (C) bins 

for LFM_6 (left) and LFM_4 (right).  

Apart from some extreme outdoor weather conditions 
i.e. the top and bottom of the weather distribution most 

weather bins have the ‘meas – fit’ within ±-1% (light cyan 

to light orange). 

Note the fit to the indoor measurements is even better 
at mostly ± 0.4%. The 50C lines is all overestimated a 

little, it’s possible that this chart has just identified a slight 

measurement inaccuracy at 50C as they are all ~+0.3% 

rather than -0.1%. This will be investigated further. 

 

 
# Python code [J] 

 

# Residual MLFM fit heatmap(colours)  

# vs. poa_global(x), temp_module(y) 

heatmap_plot = plot_heatmap( 

    dnorm=norm,  

    dmeas=meas, 

    fit=mlfm_sel, 

    y_axis='temp_module_bin', 

    x_axis='poa_global_bin', 

    z_axis='diff_' + mlfm_sel, 

    title='residual ' + mlfm_meas_file 

) 
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LFM_6 – Outdoor c-Si Gantner Instruments  LFM_4 – IEC 61853 Matrix c-Si CFV 

  

Figure 6: Residual error heatmaps pr_dc ‘meas – fit’ for LFM6 (left) and LFM4 (right) 

 

 

2.11 [K] ‘Scatter plot: norm pmp fit() vs. meas(→)’ 

 

Figure 7 gives the mpm fitted vs. measured normalised 

p_mp (= meas_p_mp / ref_p_mp) with a 1:1 line) 

indicating a very good fit for both LFM_6 and LFM_4. 
 

 

 

 
 

 

# Python code [K] 

 

# plot fit vs. measured,  

# include a 1:1 line 

fit_plot = plot_fit( 

    dmeas=meas,  

    dnorm=norm,  

    fit=mlfm_sel,  

    title='fit ' + mlfm_meas_file 

) 

 

 

LFM_6 – Outdoor c-Si Gantner Instruments  LFM_4 – IEC 61853 Matrix c-Si CFV 

  
Figure 7: Scatter plot showing normalised p_mp fitted () vs. measured (→)  

 

 
It is hoped that the mlfm can be put into pvlib soon. Please 

see the pull [4] request and help if you can. 

 

4. CONTRIBUTING  

 
Table III summarises links and information on helping 

adding code to PVLIB. 

 

 

 

Table III: How to contribute to PVLIB 

 

INFORMATION : 

• Stack Overflow :  http://stackoverflow.com/questions/tagged/pvlib 
• Google groups :  https://groups.google.com/forum/#!forum/pvlib-python 

• GitHub issues :  https://github.com/pvlib/pvlib-python/issues 

http://stackoverflow.com/questions/tagged/pvlib
https://groups.google.com/forum/%23!forum/pvlib-python
https://github.com/pvlib/pvlib-python/issues
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• Pull requests :  https://github.com/pvlib/pvlib-python/pulls 

• Jupyter Notebook tutorials : https://github.com/pvlib/pvlib-python/tree/master/docs/tutorials 

• Follow PEP8 :  https://www.python.org/dev/peps/pep-0008/. (Max line length 79 chars) 
• Add your project :  https://github.com/pvlib/pvlib-python/wiki/Projects-and-publications-that-use-pvlib-python. 

• Variables and Symbols :  https://pvlib-python.readthedocs.io/en/stable/user_guide/variables_style_rules.html#variables-style-rules 

• Documentation style :  https://pvlib-python.readthedocs.io/en/stable/contributing.html#documentation  

 

Coding :  

• PVSystem and Location classes provide convenience wrappers around the core PVLIB functions.  

• Remove logging calls and print statements. 

• Include documentation and Comprehensive unit tests  
• Functions must return the desired output for all inputs see https://github.com/pvlib/pvlib-python/issues/394 

 

PVPMC :  https://pvpmc.sandia.gov/ 

Document Library :  https://pvpmc.sandia.gov/resources-and-events/documents/ 
Code of conduct :  https://github.com/pvlib/pvlib-python/blob/master/CODE_OF_CONDUCT.md 

Cite this paper: https://doi.org/10.21105/joss.00884 
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6. CONCLUSIONS 

 

The MLFM is being added to PVLIB python 

 
The robust modelling of the LFM and MPM have been 

described 

  

These are proving useful in industrial projects from 
single module OTFs to large power plants 

 

Information has been given on how other coders can 

contribute their projects 
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