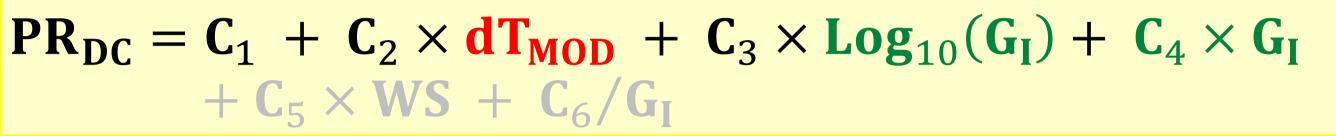
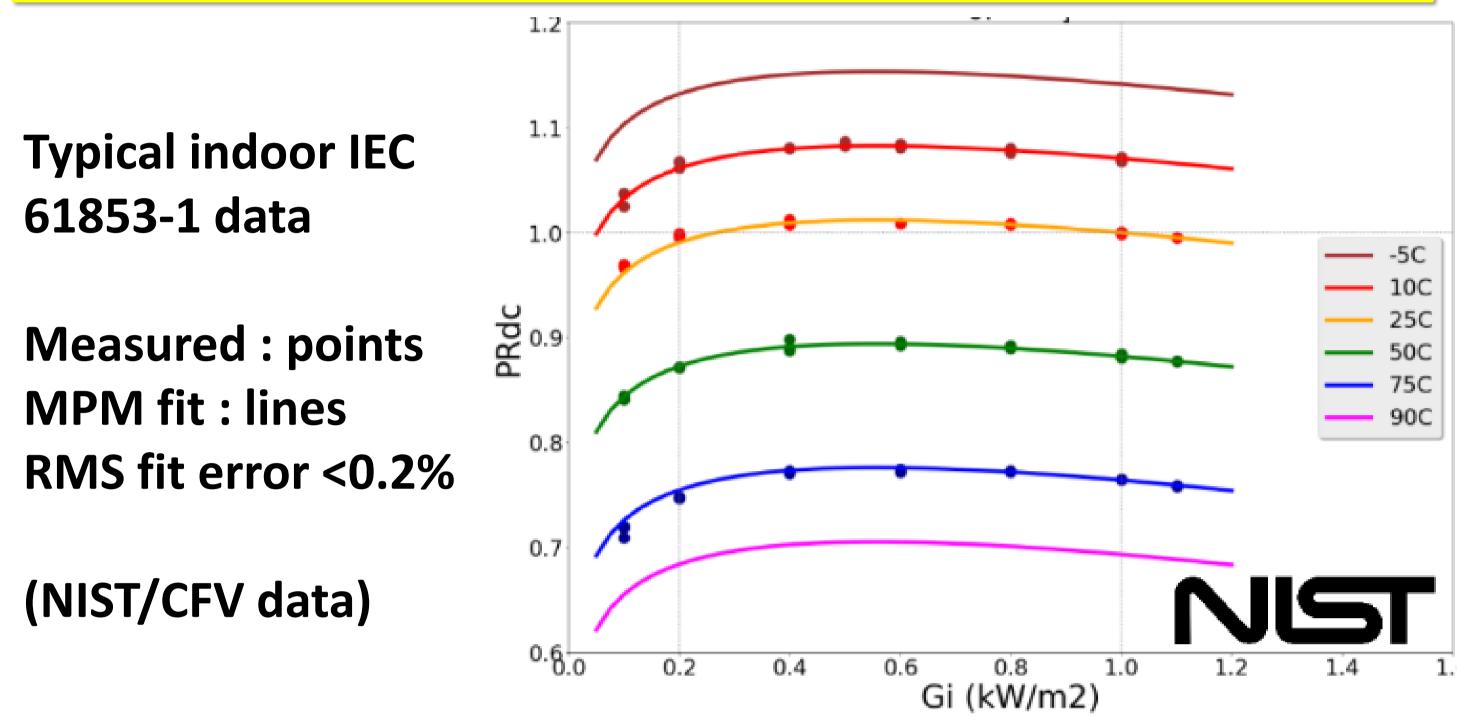


Quantifying and analysing the variability of PV module resistances R_{sc} and R_{oc} to understand and optimise kWh/kWp modelling

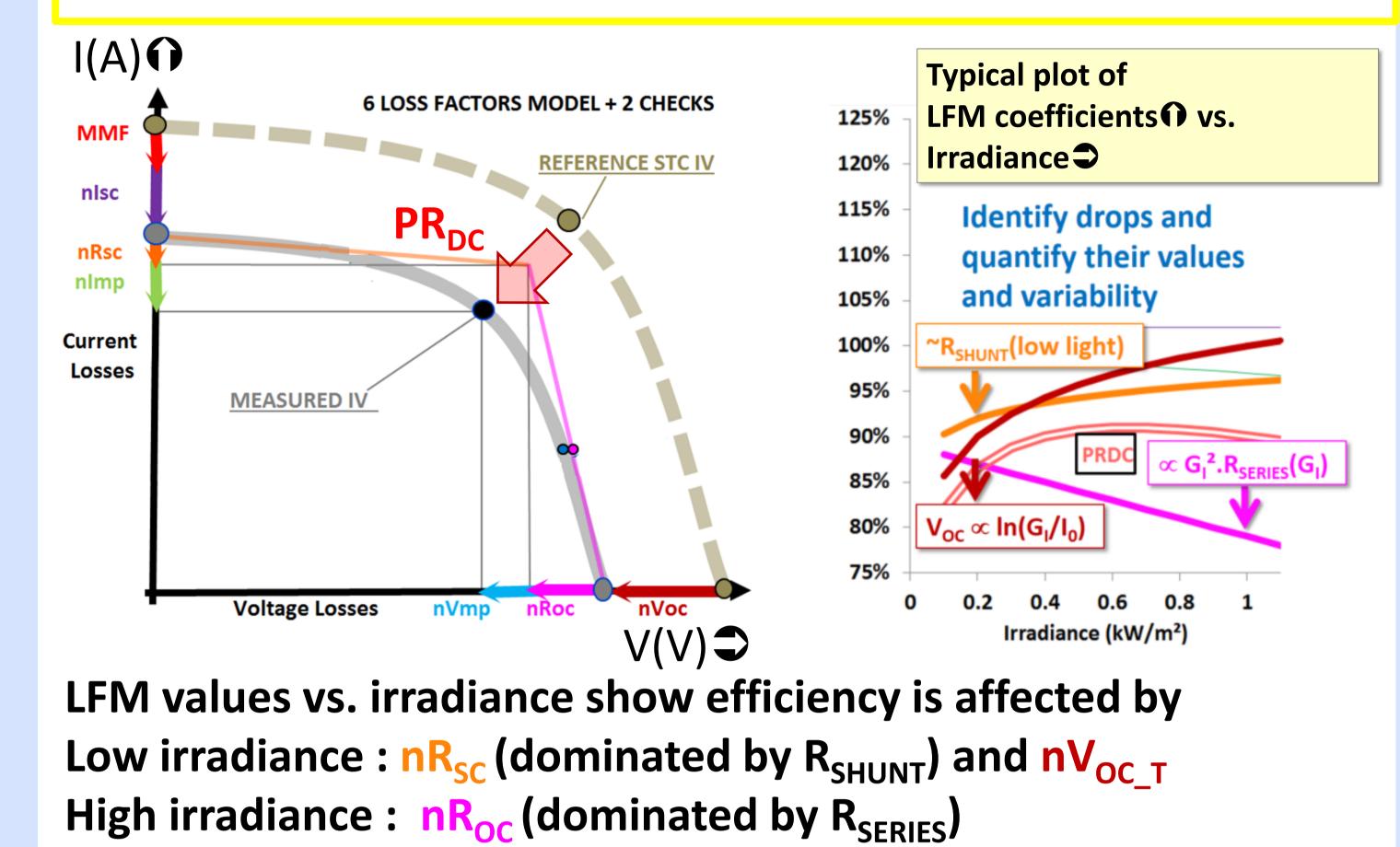
Steve Ransome (SRCL UK) and Juergen Sutterlueti (Gantner Instruments AUT)

1) Introduction


- The IEC 61853-1 matrix method characterises PV module efficiency vs. irradiance (G_I) and module temperature (T_{MOD})
- Analysing IV curves to find I_{sc}, V_{oc}, I_{MP}, V_{MP}, R_{sc} and R_{oc} gives more useful information than just efficiency measurements at V_{MP}.
- Combining Loss Factor Model (LFM) type analysis of IV curves with IEC 61853-1 matrices gives best understanding.


2) Fitting IEC 61853-1 performance vs. G_I and T_{MOD}

The Mechanistic Performance Model (MPM) fits PR_{DC} for both indoor and outdoor matrix measurements [1]. MPM has 6 meaningful, orthogonal, normalised and robust coefficients (for simplicity only C₁ to C₄ are used here)


3) Characterising IV curves with the Loss Factors Model

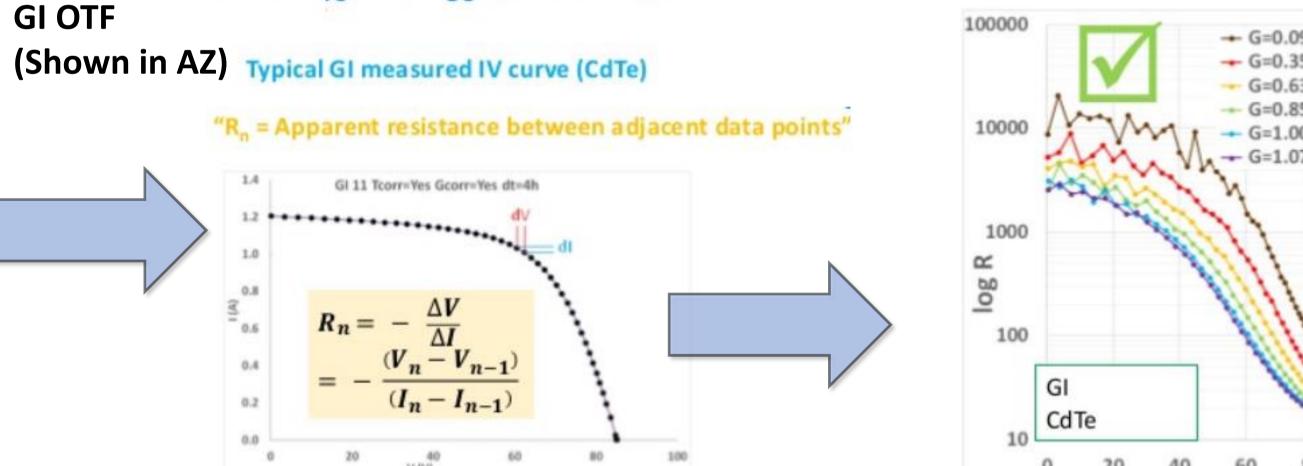
LFM has 6 meaningful, orthogonal, normalised parameters [2] (spectral module mismatch factor MMF not used here)

$\mathbf{PR_{DC}} = [\mathbf{nI_{SC}} \times \mathbf{nR_{SC}} \times \mathbf{nI_{MP}}] \times [\mathbf{nV_{MP}} \times \mathbf{nR_{OC}} \times \mathbf{nV_{OC}}]$

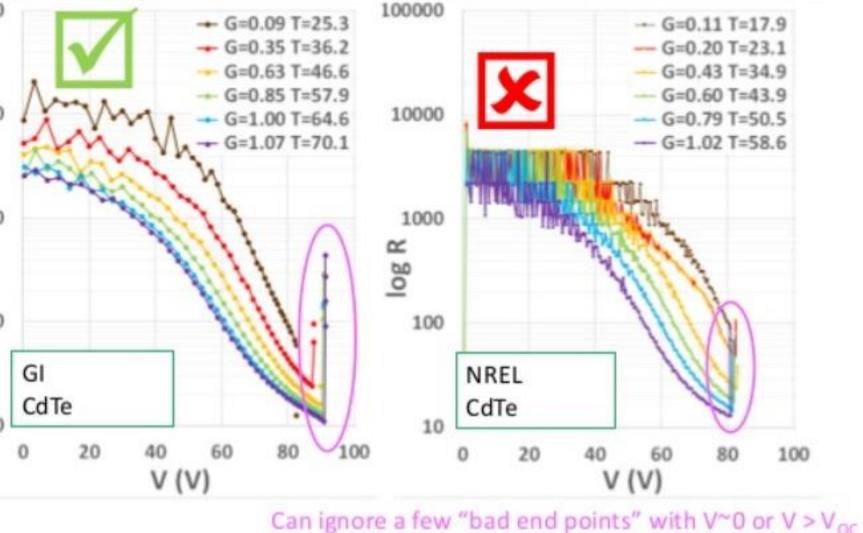
4) High quality IV measurements are needed for the best analysis (e.g. from GI's OTF)

www.gantner-environment.com/products/outdoor-test-facility.html [3]

Smooth IV curves are needed for good R_{sc} and R_{oc} calculations Checking IV data quality with Log Resistance-Voltage (RV) curves GI data much smoother than NREL's Daystar and therefore easier to fit.


Fast response time: (10 ... 100%): 30us Dynamic sweep time and scan interval (from seconds to hours)

On the fly calculation of all key parameters Isc, Rsc, Imp, Vmp, Roc, Voc;


Real time performance prediction

Optional outdoor spectroradiometer

Reliable and proven industry components and calibrated sensors

Note : Smooth IV curves result in most accurate analysis

KEY TO LEGEND :

Coefficients

YEAR LFM_PARAMETER MODID

3 LG = log10irrad (low light %)

2 dT = delta Tmod Temp Coeff (%/K)

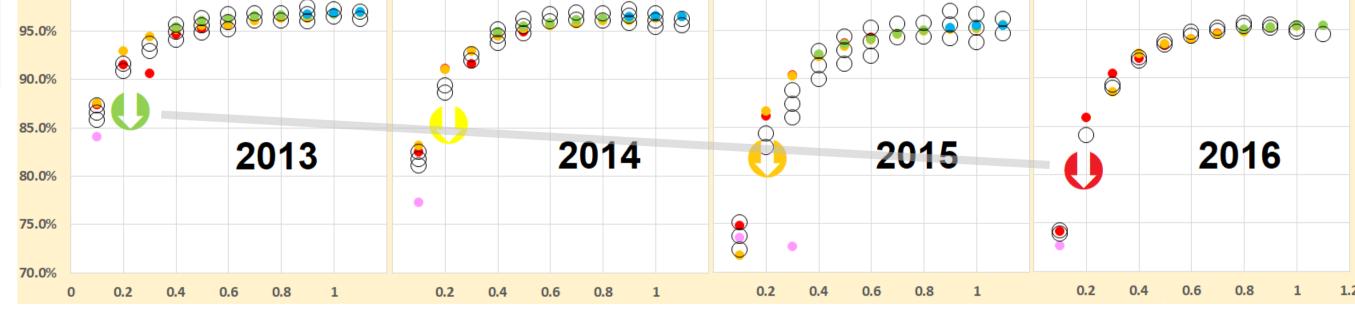
1 C = constant (quality %)

4 G = GI (high light %)

5) Optimum performance analysis with LFM coefficients, MPM model and IEC 61853-1 matrix data Fit all 6 LFM parameters with MPM type equations using matrix approach of G and T — bins for each year

Fit all 6 LFM parameters with MPM type equations using matrix approach of G_I and T_{MOD} bins for each year

 $nLFM = C_{LFM1} + C_{LFM2} \times dT_{MOD} + C_{LFM3} \times Log_{10}(G_I) + C_{LFM4} \times G_I \qquad <LFM/MPM>$


Comparing 3 LFM parameters \bigcirc vs. $G_I \bigcirc$ and T_{MOD} (coloured dots) for two technologies (GI measurements, 2014)

LFM parameter:	nR _{oc} (~R _{series})	nVoc	nR _{sc} (~ R _{shunt})
Dograding thin film #11	2014_nRoc:11	2014_nVoc:11	2014_nRsc:11 C=112.08% LG=28.59% dT=0.05% G=-17.41%
Degrading thin film #11	Smaller high lig	ht nR _{oc} 40 • 55 • 70 • nVoc.calc	105.0%
	\rightarrow TF worse R _{SERIES}		
O R _{SERIES} Temp. Coeff.			
SERIES I	90.0%	90.0%	90.0%

nR_{sc} vs. Gi : Finding the cause and rate of drop of a degrading module 2013-16 (GI Measurements)

	2013_nRsc:11							2014_nRsc:11					2015_nRsc:11							2016_nRsc:11								
	C=105.24% LG=17.66% dT=0.05% G=-10.28%						6	C=112.08% LG=28.60% dT=0.05% G=-17.42%					C=113.11% LG=37.33% dT=0.10% G=-20.79%						C=116.59% LG=40.16% dT=0.02% G=-22.20%									
.05.0%																												
	• 10	• 25	<mark>- 40</mark>	• 55	• 70	⊖ nRsc.	.calc	• 10	• 25	<mark>- 40</mark> (55	• 70	⊖ nR	sc.calc	• 10	• 25	<u> </u>	• 55	• 70	⊖ nR	sc.calc	• 10	• 25	<u> </u>	• 55	• 70	⊖ nRsc	c.calc
.00.0%																												
						\frown														-								

● 7% Performance fall at low light in 3 years is caused by degrading R_{SHUNT} causing nR_{SC} to reduce (Gantner Instruments data) As PR_{DC} is the product of six coefficients –

<u>any</u> drop or change has a direct influence on PR_{DC} and therefore energy yield.

6) Glossary + references

LFM Loss Factors Model [2]

- MPM Mechanised Performance model [1]
- G₁ Plane of array instantaneous irradiance (kW/m²)
- T_{MOD} Module Temperature (C)
- dT_{MOD} Module temperature rise 25 (C)
- OTF Outdoor Test facility as sold by Gantner Instruments
- STC Standard Test Conditions 1kW/m², 25C T_{MODULE}, AM1.5, 0 ms⁻¹
- LLEC "Low light efficiency coefficient" = $(Eff_{0.2kW/m^2}/Eff_{1kW/m^2})$
- NOCT $T_{MODULE} @ (0.8 kW/m^2, 20C T_{AMBIENT}, AM1.5, 1ms^{-1})$
- I^2Rs % Loss in series resistance = $I_{MAX}^2 * R_{SERIES} / P_{MAX.STC}$
- nLFM normalised LFM coefficient
- nLFM_T Temperature corrected LFM coefficient

[1] MPM (papers 79, 81, 82) steve@steveransome.com[2] LFM (paper 70) steve@steveransome.com

7) Conclusions

- The causes and rates of PV performance degradation (e.g. "R_{SHUNT} at low light") can easily be found using these methods with <u>high quality IV data</u> such as from GI's OTF
- Optimized MPM curve fitting has been generalised and combined with the LFM
- MPM coefficients give normalized values for quality, temperature dependence, low light (due to V_{OC}(G_I) and R_{SHUNT}(G_I)) and high light drops due to I².R_{SERIES}

[3] Gantner Instruments <u>www.gantner-environment.com/products/gantnerwebportal.html</u>