

IEEE 31st PVSC – Orlando, Florida, USA

WEDS Poster 2 A6 4.22

Steve Ransome John Wohlgemuth Stephen Poropat Eduardo Aguilar

BP Solar, Sunbury-on-Thames, UK BP Solar, Frederick, MD, USA BP Solar, Sydney, Australia BP Solar, Madrid, Spain

Advanced analysis of PV system performance using normalised measurement data

1. Introduction

- The performance of a grid connected system is usually reported by summing AC energy output over time/ nominal P_{MAX} (kWh/kWp/year) and performance ratio PR.
- Downtime, BOS faults or effects like shading need to be carefully corrected for otherwise they dominate comparative kWh/kWp values.
- A better way of characterising performance is to use the module DC yield YA and the performance factor versus plane of array irradiance G₁.
- When the module is performing well the data will be in a narrow range that can be curve fitted with empirical formulae.
- Underperforming points (which may depend on random events like outages) can be easily identified as they will not lie in this range.
- The expected yield in kWh/kWp can then be determined by folding in the curve fit to the good performance points by the expected irradiance and temperature data.

2. Outdoor measurements

- DC Comparative module test in Sydney, Australia.
- IV swept every 30 minutes, DC measurements every minute.
- Modules taller than originally designed for were put on test late Autumn and some shading was seen early morning in mid winter (see bottom of middle row).
- The effect of this shading was studied for a few months before moving arrays further apart.

3. Characterise DC module

- Measurements of a BP 7180 in Sydney over the winter when shading was occurring.
- Note PF drops under low light when shading was occurring (open diamonds).
- Grey diamonds are PF when no shading.
- When unshaded there is a good, Flat PF response down to 0.05 kW/m^{2.}

4. Check voltage tracking and shading

When shaded or other poor data had been removed,

5. Empirical fits to DC module

Modules can be characterised by fits to empirical

6. Model BOS and AC System

Once DC modules have been characterised these

- check for good module peformance. formulae
- V_{DM} (=V_{DC}/V_{MAX}) should be 0.8-1.0 to indicate high voltage and good V_{MAX} tracking (blue limits)
- I_{DM} (=I_{DC}/I_{MAX}) should be near 1:1 line which indicates high current and no shading (green limits)
- formulae
- $T_M = C' T_{AM} + G_1 (A' + D' WS) + E'$
- $V_{DM} = A'' * LOG_{10}(G_1) + C'' * T_M + D'' * WS + E''$

(1)

(2)

(3)

(4)

- Yield = $\Sigma_t G_1^* (A + B^* \Sigma_t G_1 + C^* T_{AM} + D^* WS) E$
- $A = A_{\text{SYSTEM}} * A_{\text{INVEFF}} * A_{\text{PACTUAL/PNOMINAL}} * A_{\text{STABIL'N(exposure)}} * A_{\text{SPECTRUM(time of year)}}$
- models can be applied to large AC arrays.
- Normalised currents and voltages should be within the same range for AC arrays as for DC modules.
- For AC modelling we need to add system dependent losses for the BOS (inverters, DC wiring, mismatch etc.)

7. Model AC system – Apply DC PV model * AC and BOS losses

 Two strings in a large array in the UK were analysed. This string had good V_{MAX} tracking and its T_{MODULE} as predicted by empirical equations. It showed good yield as expected

 Another string showed glitches in V_{MAX} tracking, (much higher than expected around noon) resulting in poor current and therefore low yield.

The right hand string was later found to have a faulty fan in the inverter which was then deliberately going over voltage to stop itself overheating. Once repaired it had similar performance to the left string.

9. Conclusions

- DC module performance can be characterised by measurements of performance factor PF vs irradiance, temperature and wind speed.
- Values of normalised voltage V_{DM} and current I_{DM} can be used to determine when the module is performing correctly or if it is wrongly voltage tracked or shaded.
- Empirical formulae can be used to evaluate the optimum yields of large arrays and determine any occurrences of and reasons for poor performance.

8. Parameter definitions

Abbrev- iation	Colour/ Symbol	Long name	Unit	Definition
T _{AM}		Ambient temp.	°C	-
T _M	•	Module temp.	°C	-
YR	•	Insolation or Ref yeild	kWh/m²	$= \Sigma_t(G_1)$
V _{DM}	•	Normalised	-	$= V_{DC}/V_{MAX}$
I _{DM}	٠	Normalised DC current	-	$= I_{DC} / I_{MAX}$
YA		DC yield	Wh/Wp	$= \Sigma_{t}(P_{DC})/P_{MAX}$
YF	•	AC yield	Wh/Wp	$= \Sigma_{t}(P_{AC})/P_{MAX}$
PF	•	Performance Factor (DC)	-	= YA/YR
PR	•	Performance Ratio (AC)	-	=YF/YR

10. References

BP Solar Technology Publications

http://www.bpsolar.com/ContentPage.cfm?page=154

http://www.bpsolar.com/