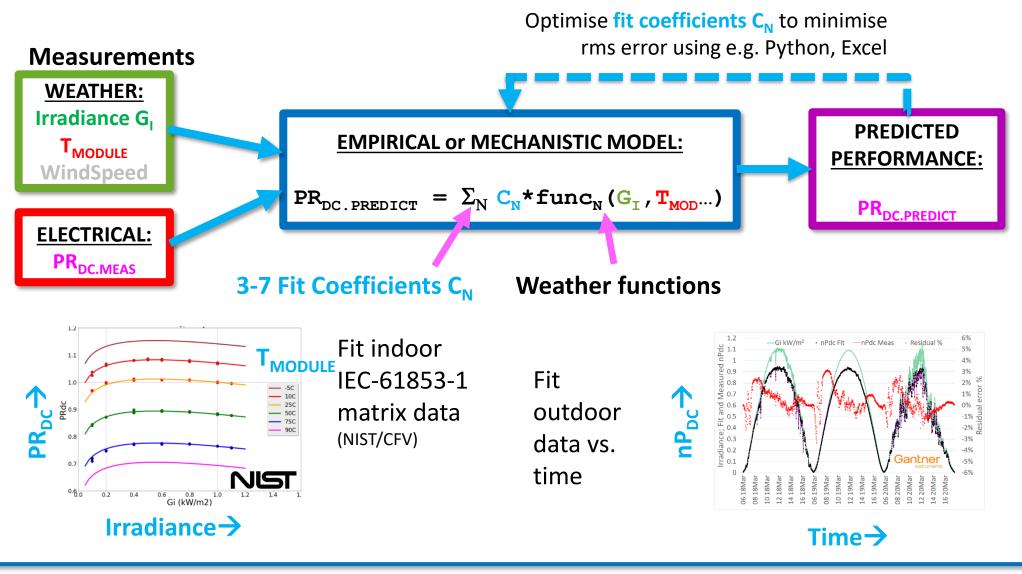
Optimised fitting of indoor (e.g. IEC 61853 matrix) and outdoor PV measurements for diagnostics and energy yield predictions

Steve Ransome¹ & Juergen Sutterlueti²

¹Steve Ransome Consulting Limited, London UK ²Gantner Instruments, Austria

7MoO.5.4 PVSEC-27 Shiga Japan 13th Nov 2017


Present status of this study ...

- A comparison of 12 existing Empirical models showed a limitation in their accuracies fitting measured data (i.e. with scatter) due to some coefficients being unphysical [1,2,3]
- Therefore an optimised Mechanistic Performance Model (MPM) was proposed with only physical coefficients
- This study looks at yearly energy yield prediction uncertainties due to fitting data vs. added random noise

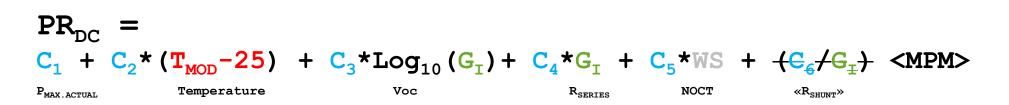
[1] 7th PVPMC Canobbio, [2]44th PVSC Washington [3]33rd PVSEC Amsterdam

How some models predict PV performance from G_I and T_{MOD} (DC Performance Ratio $PR_{DC} = Eff_{DC.MEAS}/Eff_{STC}$ or MPR)

www.steveransome.com

13-Nov-17 Gantner

How does PV performance depend on weather inputs?


iviodel only expected behaviour

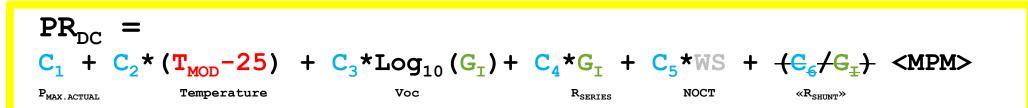
1. $I_{MAX} \propto G_{I}$

13-Nov-17

- 2. $P_{MAX} \propto (1 + \gamma^* (T_{MOD} 25)) \dots$
- 3. $V_{MAX} \propto \log(G_{I})$
- 4. $\Delta P_{MAX} \propto I_{MAX}^2 * R_{SERIES}$
- 5. T_{MOD} ~ T_{AMB} fn(Windspeed) NMOT Thermal rise
- 6. $R_{SHUNT} \propto 1/exp(G_i)$

Module STC rating actual/nominal Power temperature coefficient "γ" From diode equation I².R_s loss NMOT Thermal rise (dependant on PV technology)

MPM model has only "Meaningful, Orthogonal, Robust, Normalised" coefficients

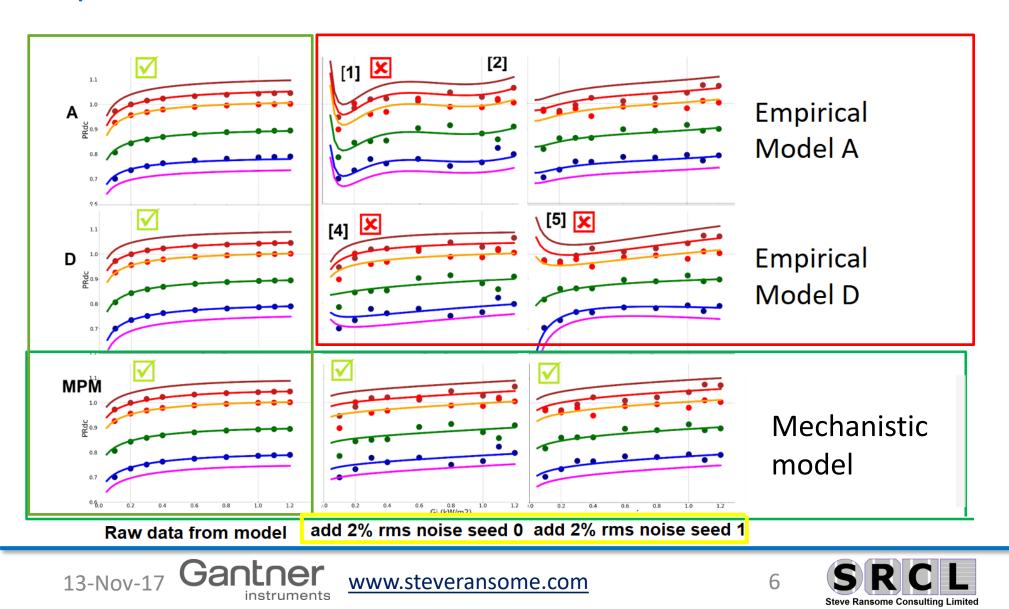

How does PV performance depend on weather inputs? Model only expected behaviour

1. $I_{MAX} \propto G_{I}$

13-Nov-17

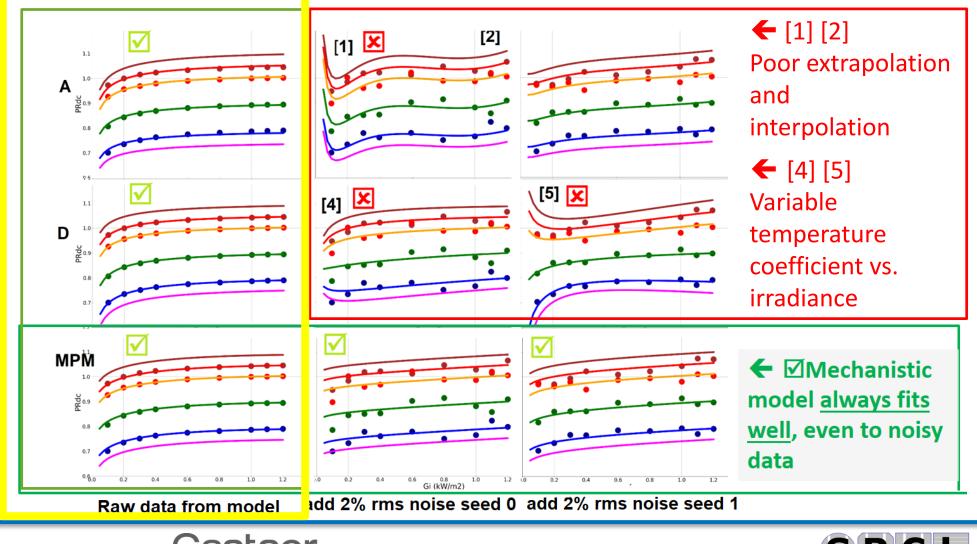
- 2. $P_{MAX} \propto (1 + \gamma^* (T_{MOD} 25)) \dots$
- 3. $V_{MAX} \propto \log(G_{I})$
- 4. $\Delta P_{MAX} \propto I_{MAX}^2 * R_{SERIES}$
- 5. T_{MOD} ~ T_{AMB} fn(Windspeed) NMOT Thermal rise
- 6. $R_{SHUNT} \propto 1/exp(G_{I})$

Module STC rating actual/nominal Power temperature coefficient "γ" From diode equation I².R_s loss NMOT Thermal rise (dependant on PV technology)



MPM model has only "Meaningful, Orthogonal, Robust, Normalised" coefficients

Comparing Empirical and Mechanistic models (61853-1 matrix) (PR_{DC} vs. Irradiance and T_{MODULE} coloured lines) Compare fits to raw model data vs. 2% rms added noise to mimic measured data



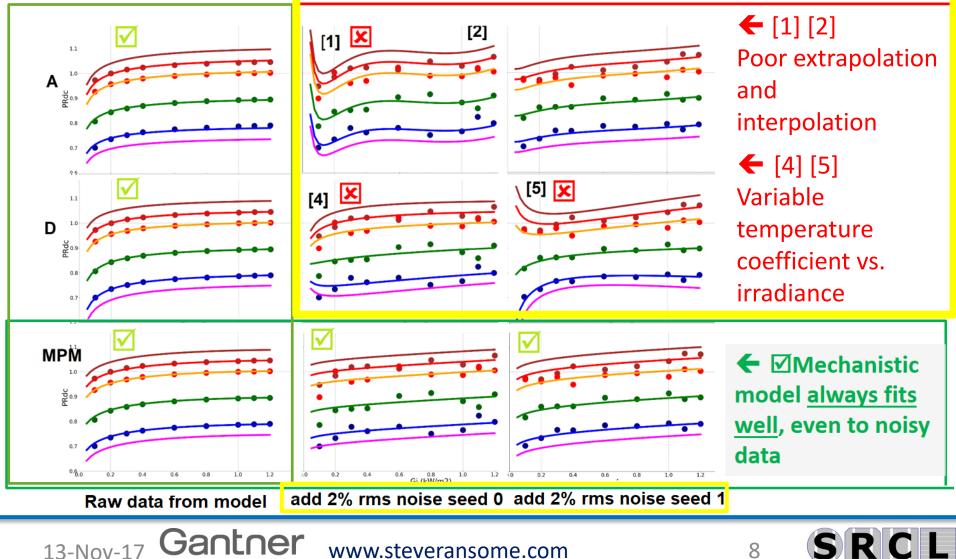
Comparing Empirical and Mechanistic models (61853-1 matrix) (PR_{DC} vs. Irradiance and T_{MODULE} coloured lines)

All fit "Perfect" data

13-Nov-1

Empirical Models <u>don't</u> fit "imperfect or noisy data" well

www.steveransome.com


nstruments

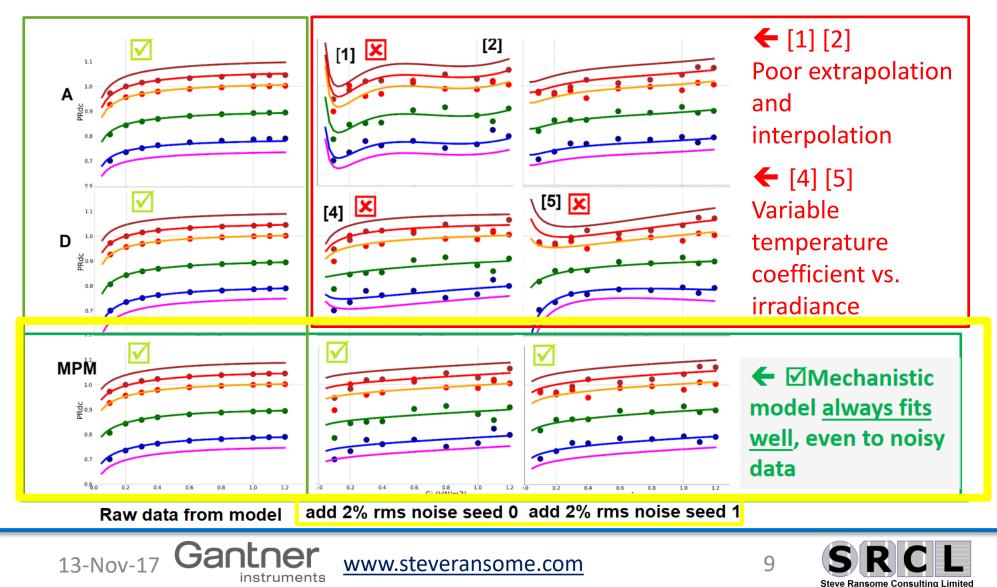
S R C L Steve Ransome Consulting Limited

Comparing Empirical and Mechanistic models (61853-1 matrix) (PR_{DC} vs. Irradiance and T_{MODULE} coloured lines)

All fit "Perfect" data

Empirical Models <u>don't</u> fit "imperfect or noisy data" well

www.steveransome.com


nstruments

Comparing Empirical and Mechanistic models (61853-1 matrix) (PR_{DC} vs. Irradiance and T_{MODULE} coloured lines)

All fit "Perfect" data

Empirical Models <u>don't</u> fit "imperfect or noisy data" well

Comparing model coefficients vs. technology cSi aSi CdTe [SUPSI data]

Technology	ID	C ₁	C	2	C ₃	C	4	C ₅		rms
c-Si	60)		-42.3	53.9		-10.7	4	32.9	-8.0	0.22%
c-Si	62)		127.2	159.8		-31.7	-9	97.8	-23.9	0.22%
c-Si	64)		-71.5	90.5		-18.0	-	55.3	-13.5	0.09%
c-Si	66)		-93.4	<mark>117.</mark> 6		-23.4	-7	72.0	-17.6	1.84%
c-Si	67)		100.2	123.8		24.6	7	75.6	18.4	0.24%
c-Si	68)		-69.5	87.9		-17.5	-	53.8	-13.1	0.16%
c-Si	70)		-37.3	131.4		-98.7	2	21.9	23.5	0.10%
c-Si	71)		6.4	-6.8		1.4		4.1	0.9	0.07%
c-Si	72)		60.7	132.5		76.7	1	10.1	-10.2	0.59%
c-Si	73)		53.8	-68.9		16.3		38.4	8.7	0.09%
TF a-Si	65)		0.2	1.1		-0.3		-0.5	- 0 .1	0.94%
TF a-Si	74)		90.8	121.1		31.9	e	2.8	13.2	0.32%
TF CdTe	63)		-0.6	2.2		-0.6		-1.2	-0.3	0.27%

Empirical model

No pattern to coefficients even though fits are reasonable and c-Si measurements were quite similar

c-Si	60) \$	96.2% -0.45	8.3%	-2.1%	0.0%	0.07%	
c-Si	62) \$	109.6% -0.42	20.5%	-10.0%	0.0%	0.09%	
c-Si	64) (106.4% -0.45	8.5%	-6.4%	0.0%	0.09%	
c-Si	66) (107.7% -0.48	11.9%	-7.7%	0.0%	0.08%	
c-Si	67) \$	115.2% -0.48	18.2%	-15.4%	0.0%	0.11%	
c-Si	68) \$	107.6% -0.47	10.4%	-7.5%	0.0%	0.09%	
c-Si	70) (103.7% -0.46	3.9%	-4.3%	0.0%	0.08%	
c-Si	71) \$	113.7% -0.469	24.4%	-12.4%	0.0%	0.08%	
c-Si	72) \$	99.6% -0.44	0.7%	1.2%	0.0%	0.20%	
c-Si	73) \$	109.4% -0.45	17.1%	-9.2%	0.0%	0.09%	
TF a-Si	65) (112.2% -0.11	31.6%	-11.9%	0.0%	0.21%	
TF a-Si	74) (122.7% -0 <mark>.22</mark>	39.5%	-23.1%	0.0%	0.33%	
TF CdTe	63) (121.3% -0 <mark>.23</mark>	19.6%	-20.2%	0.0%	0.16%	
P_{MAX} tolerance / $Realistic P_{MAX}$							

13-Nov-17

MPM Mechanistic model

Sensible values of all coefficients = more robust

Realistic P_{MAX} Temperature coefficient etc.

www.steveransome.com

Comparing model coefficients vs. technology cSi aSi CdTe [SUPSI data]

Technology	ID	C ₁ (C ₂ C	C ₃ (C ₄ C ₅	5	rms
c-Si	60)	-42.3	53.9	-10.7	-32.9	-8.0	0.22%
c-Si	62)	127.2	159.8	-31.7	-97.8	-23.9	0.22%
c-Si	64)	-71.5	90.5	-18.0	-55.3	-13.5	0.09%
c-Si	66)	93.4	<mark>117.</mark> 6	-23.4	-72.0	-17.6	1.84%
c-Si	67)	100.2	123.8	24.6	75.6	18.4	0.24%
c-Si	68)	-69.5	87.9	-17.5	-53.8	-13.1	0.16%
c-Si	70)	-37.3	131.4	-98.7	21.9	23.5	0.10%
c-Si	71)	6.4	-6.8	1.4	4.1	0.9	0.07%
c-Si	72)	60.7	132.5	76.7	10.1	-10.2	0.59%
c-Si	73)	53.8	-68.9	16.3	38.4	8.7	0.09%
TF a-Si	65)	0.2	1.1	-0.3	-0.5	-0.1	0.94%
TF a-Si	74)	90.8	121.1	31.9	62.8	13.2	0.32%
TF CdTe	63)	-0.6	2.2	-0.6	-1.2	-0.3	0.27%
- C:	COV						

Empirical model

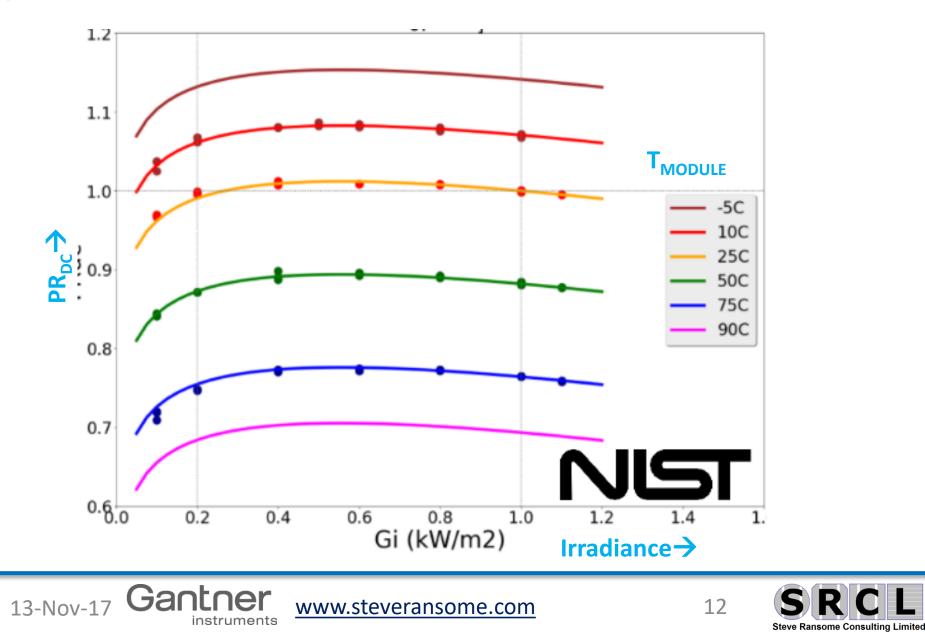
No pattern to coefficients even though fits are reasonable and c-Si measurements were quite similar

c-Si	60) \$	96.2%	-0.45%	8.3%	-2.1%	0.0%	0.07%
c-Si	62) (109.6%	-0.42%	20.5%	-10.0%	0.0%	0.09%
c-Si	64) (106.4%	-0.45%	8.5%	-6.4%	0.0%	0.09%
c-Si	66) (107.7%	-0.48%	11.9%	-7.7%	0.0%	0.08%
c-Si	67) (115.2%	-0.48%	18.2%	-15.4%	0.0%	0.11%
c-Si	68) (107.6%	-0.47%	10.4%	-7.5%	0.0%	0.09%
c-Si	70) (103.7%	-0.46%	3.9%	-4.3%	0.0%	0.08%
c-Si	71) (113.7%	-0.46%	24.4%	-12.4%	0.0%	0.08%
c-Si	72) (99.6 <mark>%</mark>	-0.44%	0.7%	1.2%	0.0%	0.20%
c-Si	73) (109.4%	-0.45%	17.1%	-9.2%	0.0%	0.09%
TF a-Si	65) <u>(</u>	112.2%	-0.11 <mark>%</mark>	31.6%	-11.9%	0.0%	0.21%
TF a-Si	74) (122.7%	-0 <mark>.22%</mark>	39.5%	-23.1%	0.0%	0.33%
TF CdTe	63) (121.3%	-0 <mark>.23%</mark>	19.6%	-20.2%	0.0%	0.16%
+ -l- <i>u</i>		1	K	Da	لما:مه	:- D	т

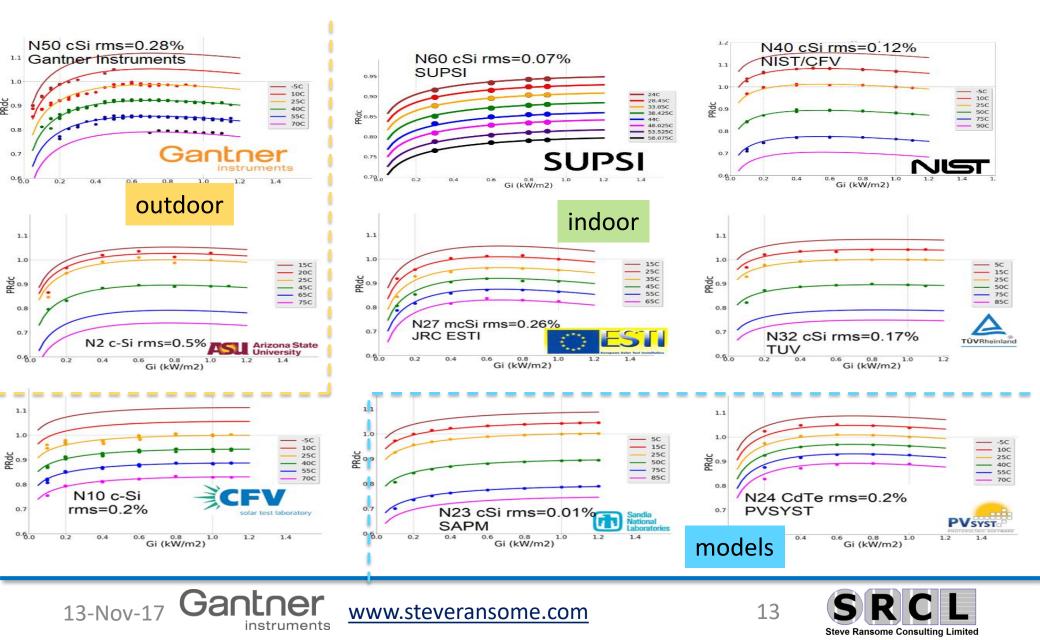
13-Nov-1

MPM Mechanistic model

Sensible values of all coefficients = more robus

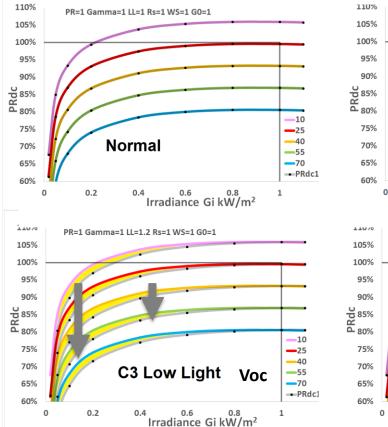

 P_{MAX} tolerance / \sum Realistic P_{MAX} Temperature coefficient etc.

www.steveransome.com



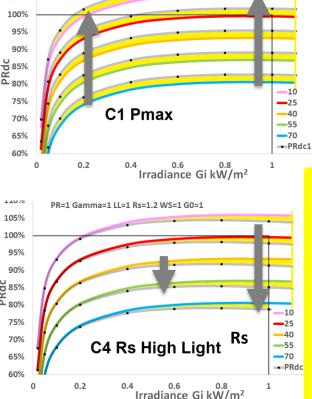
How well can MPM fit IEC 61853-1 data?

Typical c-Si data from NIST/CFV has an rms error of 0.12%



MPM can easily fit 3rd party indoor, outdoor and models Data From Gantner, SUPSI, NIST, ASU, ESTI, TUV Rheinland, CFV, SAPM and PVSYST

Are all the model coefficients independent?



Gantner

instruments

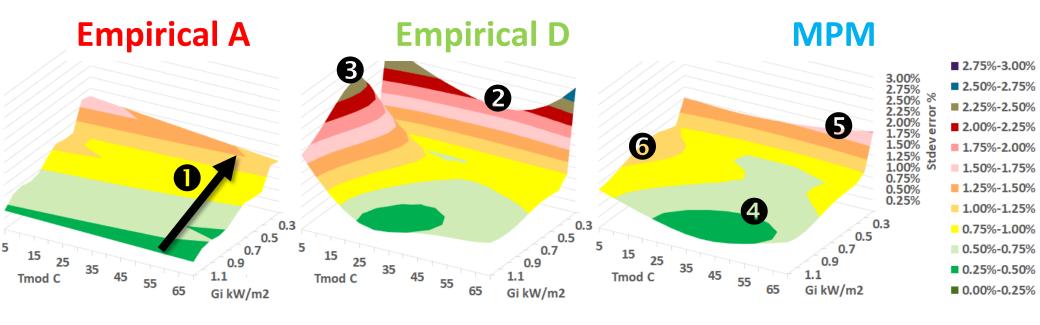
13-Nov-17

www.steveransome.com

PR=1.02 Gamma=1 LL=1 Rs=1 WS=1 G0=1

If we alter each coefficient individually all traces should change differently

These graphs do that so the MPM has unique fits and is robust


Investigating energy yield

- How does the robustness and variability of a model fit affect its energy yield predictions?
- Consider fit variability at low and high light levels and temperatures with sites that are dull, bright, cold or hot.

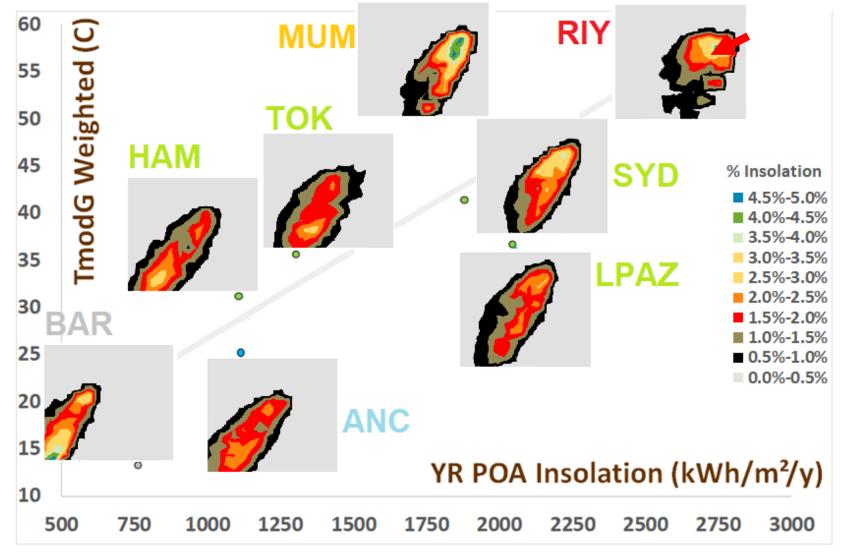
How do the model fits vary vs. T_{MOD} and irradiance bins?

Decline in accuracy as irradiance falls

13-Nov-1

Gantner

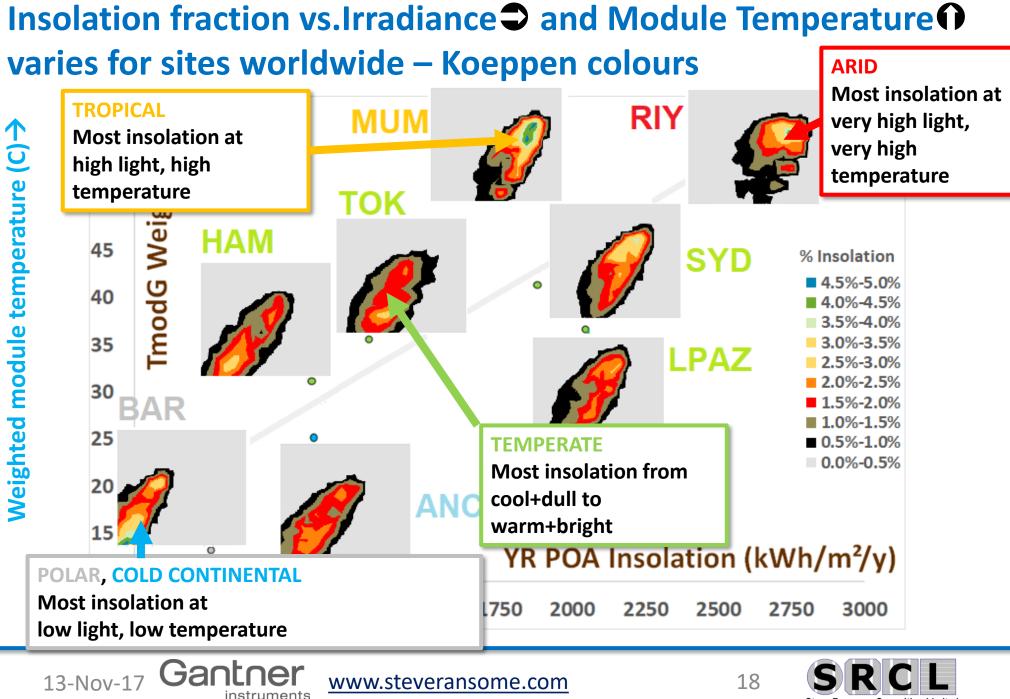
instruments


Variable at low light Poor at Cold+Mid light levels

Good almost everywhere
Only slightly worse at
lowest light or
cold+mid light levels

www.steveransome.com

Insolation fraction vs.Irradiance and Module Temperature varies for sites worldwide – Koeppen colours


www.steveransome.com

Gantner

instruments

13-Nov-1

Energy Yield predicted variability by site

- Polar to Arid
- Each site has rms error for 1) Summer month (Jul or Jan)
 2) Winter month (Jan or Jul)
 3) Yearly Average (All 12 months)
- The most robust model should have lowest rmserror everywhere

(iar

13-Nov-1

Site name, Koeppen climate designation		Δ	D	MPM
BARENTSBERG	Summe	1.09%	0.77%	0.40%
Polar Tundra Eternal winter (ice cap)	Winter			
Etf	Year	1.21%	0.72%	0.36%
ANCHORAGE	Summe	0.50%	0.30%	0.25%
Cold (continental) Without dry season Cold summer	Winter	1.14%	0.96%	0.44%
Dfc	Year	0.54%	0.29%	0.27%
HAMBURG	Summe	0.40%	0.33%	0.23%
Temperate Without dry season Warm summer	Winter	1.89%	0.82%	0.41%
Cfb	Year	0.55%	0.32%	0.25%
токуо	Summe	0.43%	0.37%	0.28%
Temperate Without dry season Hot summer	Winter	0.31%	0.28%	0.30%
Cfa	Year	0.36%	0.28%	0.25%
SYDNEY	Summer	0.23%	0.33%	0.23%
Temperate Without dry season Hot summer	Winter	0.34%	0.28%	0.27%
Cfa	Year	0.25%	0.31%	0.23%
LA PAZ	Summer	0.30%	0.26%	0.22%
Temperate Dry winter Warm summer	Winter	0.18%	0.23%	0.17%
Cwb	Year	0.22%	0.24%	0.19%
MUMBAI	Summer	0.44%	0.39%	0.29%
Tropical Savanna, Wet	Winter	0.21%	0.35%	0.28%
Aw	Year	0.23%	0.35%	0.28%
RIYADH	Summer	0.24%	0.36%	0.36%
Arid Desert Hot	Winter	0.21%	0.29%	0.21%
Bwh	Year	0.21%	0.32%	0.27%
AVERAGE 22 SITES	Summer	0.33%	0.36%	0.27%
	Winter	0.56%	0.42%	0.29%
	Year	0.35%	0.33%	0.25%

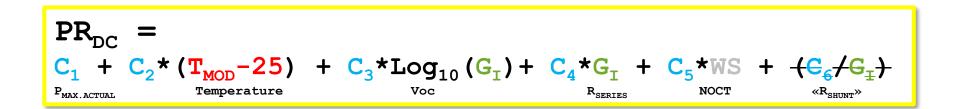
www.steveransome.com

Conclusions

13-Nov-1

Existing empirical models

E Can't repeatably fit imperfect data. They have unphysical coefficients.


Mechanistic Performance Model (MPM)

Much more robust and useful than empirical fit models

Added to Gantner Instruments' <u>www.gantner-webportal.com</u> SaaS platform

Energy yield predictions

Much less variability in EY from fitting errors for MPM 0.25-0.29% vs. Empirical 0.33-0.56%

www.steveransome.com

Conclusions

Existing empirical models

E Can't repeatably fit imperfect data. They have unphysical coefficients.

Mechanistic Performance Model (MPM)

Much more robust and useful than empirical fit models

Added to Gantner Instruments' <u>www.gantner-webportal.com</u> SaaS platform

Energy yield predictions

Much less variability in EY from fitting errors for MPM 0.25-0.29% vs. Empirical 0.33-0.56%

See Poster 7TuPo.225

13-Nov-1

Quantifying and analysing the variability of PV module resistances R_{sc} and R_{oc} to understand and optimise kWh/kWp modelling

Thank you for your attention!

• Please contact me to share your data steve@steveransome.com

