

Analysing array performance

Steve Ransome (SRCL)

International Workshop on PV System Monitoring and Performance Assessment 31st Oct 2008 : Nice, France

SRCL

- 19 years with BP Solar
- >10 years studying indoor and outdoor performance of modules
 c-Si, LGBC, 1-3J a-Si, CdTe, CIS etc
- Left BP Solar in Jan 2008
- Now an independent PV Consultant working with clients to improve their product, modelling and understanding of indoor and outdoor tests

Measuring kWh/kWp – view of ISET, Germany

Every few minutes measure :

In plane irradiance (specify sensor type)

module and ambient temperatures, wind speed,

VMAX, IMAX (DC)

PMAX (AC)

Calculate kWh/kWp = Σ (Pmax)/Pnom

Simple Sizing program flow chart to model performance

Some reasons found at <u>other</u> sites for wrong kWh/kWp module performance.

Possible Reason	Origin of Fault		
Overrated Pmax	Module manufacturer calibration		
Degradation	Module instability with time		
Poor low light level performance	Module technology or fault (e.g. low Rshunt)		
Poor high temperature performance	Module technology or mounting (e.g. rooftiles)		
Downtime	Measurement setup		
Dry joints	Module or measurement		
Nearby shading (trees etc.)	Measurement location (each module may differ)		
Inverter sizing	System design		
Poor voltage tracking	Voltage tracker or system design		
High horizon shading	Location		
Spikes in data	Measurement, error, needs checking		
Non coplanar array and sensor	Orientation of sensor, must be close to array		
Poor quality irradiance sensor	Sensor choice		

kWh/kWp uncertainties

		Different sites	Side by side
PR	Dirt, Downtime etc.	1%	0%
YR	Irradiance sensor Yearly Insolation	2% 4%	0% 0%
kWp/ Nom- inal	Ref. Module Calib. Module variability Degradation	2% 2.5% 1%/y	2% 2.5% 1%/y
	Uncertainty	~6%	~3%

Measured kWh/kWp for 7 modules -5 are within 4%, why are two lower ?

Normalised DC Performance Parameters vs Irradiance

Module Temperature, Voltage, Current and Power vs Irradiance

Good #3 Poor #5

Empirical modelling – fitting Tmodule, Vmax and dc Yield

Empirical modelling – validating Tmodule, Vmax and dc Yield

Predicted vs Measured Daily Performance Ratio

08 Oct 15 Oct 22 Oct 29 Oct 05 Nov 12 Nov 19 Nov

Detect Shading vs Solar Azimuth and Elevation

Solar Elevation →

Irradiance Vs. Date and Time

SRCL

Look for downtime, poor behaviour Performance vs Date and Time

SR

ISET Germany 10minute data Insolation and <u>DC</u> Yield

SR

Most energy production on narrow band from cool/dull to warm/bright

Inverter Efficiency can depend on Vmax

Conclusions

DC,AC outdoor measurements sometimes different from modelling algorithms Sizing programs minimise "avoidable losses" kWh predictions less precise than input uncertainties Empirical equations characterise/validate correct operation. Many channels within 4% kWh/kWp unknown kWh/kWp alone cannot identify reasons for losses Measuring one channel can't differentiate atypical poor module, degradation or technology effects

Thank you for your attention !

My publications are available www.steveransome.com

steve@steveransome.com

Acknowledgements :

Peter Funtan and ISET for the data

Modelled vs measured DC energy yield

Reference days and points

Checking downtime and/or degradation for several modules : % of total power vs time

Insolation and Energy Yield vs Diffuse:Direct fraction in Germany

Module Temperature, Voltage, Current and Power vs Irradiance

Good #3

SRCL

Poor #7

Lower

Predicted vs Measured Performance Ratio by time

Gi(kW/m²),PR 1.2 1.1 1.0 0.9 0.8 0.6 0.5 0.4 0.3 0.2 0.1 0.0SR

