Modelling inaccuracies of PV energy yield simulations

Steve Ransome

Steve Ransome Consulting Ltd 33rd PVSC San Diego - 16 May 2008

Introduction

- ✤ 19 years experience with BP Solar UK
- Responsible for sizing programs, kWh/kWp studies, indoor+outdoor testing and modelling of crystalline modules and thin film (a-Si and CdTe)
- Published at international conferences since 2000
- Left BP in Jan 2008 to form a PV consultancy SRCL
- This paper follows 23rd PVSEC in Milan Sep 2007 "4EP1.1 HOW WELL DO PV MODELLING ALGORITHMS REALLY PREDICT PERFORMANCE?" written while at BP Solar

Simple Sizing program flow chart

Simple Sizing program flow chart

Estimating uncertainties in kWh/kWp Insolation kWh/m²

kWh =(PR) * (YR) *(kWp_{ACTUAL})

kWpNOM

(kWp_{NOMINAL})

Gaussian uncertainties combine as $U^2 = u_1^2 + u_2^2 + \dots + u_n^2$

kWh/kWp uncertainties

		Different sites	
 PR	Dirt, Downtime etc.	1%	
 YR	Irradiance sensor Yearly Insolation	2% 4%	
kWp/ Nom- inal	Ref. Module Calib. Module variability Degradation	2% 2.5% 1%/y	
	Uncertainty	~6%	

kWh/kWp uncertainties

		Different sites	Side by side
 PR	Dirt, Downtime etc.	1%	0%
 YR	Irradiance sensor Yearly Insolation	2% 4%	0% 0%
 kWp/ Nom- inal	Ref. Module Calib. Module variability Degradation	2% 2.5% 1%/y	2% 2.5% 1%/y
	Uncertainty	~6%	~3%

kWh/kWp uncertainties

			Different sites	Side by side
	PR	Dirt, Downtime etc.	1%	0%
	YR	Irradiance sensor Yearly Insolation	2% 4%	0% 0%
		Ref. Module Calib. Module variability Degradation	2% 2.5% 1%/y	2% 2.5% 1%/y
		Uncertainty	~6%	~3%
		PR range (nom 75%)	71–79%	73–77%
4				

ISET Germany 10minute measured Hours and POA Insolation

ISET Germany 10minute data Insolation and AC Yield

Most energy production on narrow band from cool/dull to warm/bright

DC Energy Yield = Σ(Insolation(Gi)*Efficiency(Gi))

DC Energy Yield = Σ(Insolation(Gi)*Efficiency(Gi))

Modelled vs measured DC energy yield

SRCL SIMULATE ver: 080502 Site Mumbai STATUS STOPPED Customer Lat 19N Test 33PVSC - Mumbai, Sydney and Kassel 73E Quote number Lon Date and Time 2Mag08 Tilt 0 Comments Standard sizing Azimuth 0S SELECT MODULE 12) P=200Wp • limits Check low high Series Modules 13 (8 to 14) OK 8 14 # # ОК 3 Parallel Modules 3 (1 to 3) 1 # # Qty Modules 39 [26 to 38] Pmax Array 7806 Wp HIGH 26 # 38 # • SELECT INVERTER >>> [33] 1 # Inverter Eff. vs Vin >>> 4) At Max Vin Ŧ Parallel Inverters

MONTHLY PERFORMANCE

	Dust /month %	Ground Reflect	Shadow /month %	Glob Horiz kVM	Glob Tilt m21d	Temp Amb C	Vind Speed ms*-1	Temp Mod C	DC Yield	Perf Fact %	AC Yield Yield Vh/kVn/	Perf Rat %	
	Paula	Albedon	Shada	SE-	SE-	Les	¥5-	T	7.00	P7=	¥6	PR.	
Jan	27.	0.26	2%	4.51	4.51	25.49	3.28	31.82	4.22	93.7%	3.74	83.0%	Ja
Feb	27	0.25	17.	5.24	5.24	25.92	3.77	33.29	4.98	95.1%	4.42	84.5%	Fe
Mar	27	0.26	0%	6.06	6.06	26.95	3.76	35.48	5.83	96.3%	5.18	85.5%	Ma
\pr	27	0.28	0%	6.47	6.47	28.04	3.77	37.15	6.24	96.3%	5.54	85.6%	Aj
vlag	27	0.31	0%	6.45	6.45	28.81	3.32	37.89	6.21	96.2%	5.52	85.5%	Ma
lun	27	0.3	0%	4.85	4.85	27.68	3.81	34.50	4.62	95.2%	4.09	84.4%	Ju
ul	27	0.27	0%	3.84	3.84	26.73	4.24	32.13	3.63	94.4%	3.20	83.3%	J
ug	27	0.26	0%	3.92	3.92	26.91	3.79	32.42	3.70	94.4%	3.27	83.4%	Au
ep	27	0.27	0%	4.70	4.70	28.25	2.83	34.87	4.48	95.3%	3.97	84.4%	Se
let	27	0.26	0%	4.98	4.98	29.97	2.81	36.97	4.77	95.8%	4.23	85.0%	00
lov	27	0.25	17.	4.55	4.55	28.49	2.82	34.89	4.31	94.6%	3.82	83.8%	No
)ec	27	0.24	2%	4.21	4.21	27.27	2.81	33.18	3.93	93.4%	3.47	82.6%	De
Vh/kV	Р								1730	95.2%	1534	84.4%	k Wh/k W
:Vh/g	-			1817	1817				13504		11972		kWhi

www.steveransome.com

Modelling program written to simulate losses vs climate

Modelling PV efficiency vs light level and Inverter efficiency vs %Pin

Name Max DC Input power Max DC Voltage Max Input Current Num MPP trackers Max Strings Max Output Power Max Output Current Max Eff

Euro ETA

Toperating low

Toperating high

500

33.2

1

1

94%

-20

50

6300 W V. 96% Inverter Eff vs %Pin A. 94% # # 92% 5100 W 21.3 A. -150 90% % 280 94.50% % 88% C ■ 400 С 86% 0% 25% 50%75%

	Low V	Mid V	High V						
Vmpp	150	280	400						
Eff@%Pin									
5%	90.8%	91.2%	87.5%						
10%	91.8%	92.3%	89.2%						
20%	93.8%	94.6%	92.6%						
30%	94.2%	95.0%	93.6%						
40%	94.4%	95.1%	93.9%						
50%	94.5%	95.2%	94.2%						
60%	94.5%	95.1%	94.2%						
70%	94.4%	95.0%	94.1%						
80%	94.1%	94.8%	93.9%						
90%	93.8%	94.5%	93.8%						
100%	93.5%	94.2%	93.6%						
110%	93.2%	93.9%	93.4%						

100%

PV losses vs climate India, Australia and Germany

Inverter losses vs climate India, Australia and Germany

Empirical modelling – fitting Tmodule, Vmax and dc Yield

Empirical modelling – validating Tmodule, Vmax and dc Yield

Conclusions

Thank you for your attention

Acknowledgements : ISET for dc data

This presentation paper and slides will soon be available at

http://www.steveransome.com

Spare slides

Reference days and points

Inverter efficiency vs P_{IN} and V_{IN}

mcSi Efficiency vs Irradiance Diffuse and Direct radiation

