

# kWh/kWp : Comparing modelling, claims and measurements 5-Mar-2010 Bad Staffelstein

# Steve Ransome (SRCL), UK



<u>www.steveransome.com</u>



#### Introduction

- 19 years with BP Solar : indoor and outdoor measurements, modelling and simulation programs
- For the last two years as an independent PV consultant working with clients worldwide
- Studying kWh/kWp on many PV technologies since 1998



# What are the main differences between kWh/kWp simulations and measurements ?

- Some manufacturers have claimed up to 30% higher kWh/kWp than their competitors
- Several recent independent tests show mostly < ±5% between different technologies and manufacturers – dominated by [Pmax ACTUAL/Pmax NOMINAL]
- Simulation programs often predict > 5% kWh/kWp difference (usually suggesting better for thin film)
- I have investigated the assumptions made and algorithms used in some simulation programs

### Simulation program flow chart to calculate kWh/kWp





# How simulation programs usually calculate kWh/kWp (Matrix method)



kWh/kWp ~  $\Sigma$  Insolation<sub>(Tmod,Irradiance.)</sub>\*Efficiency<sub>(Tmod,Irradiance)</sub>



#### Module Temperature (°C)→

A frequent statement : "My simulation program gives approximate values of kWh/kWp therefore it is validated"

kWh/kWp depends on the product of >4 items

| Insolation       | PV Efficiency    | Inverter         | Unknowns     |
|------------------|------------------|------------------|--------------|
| (Gi <i>,</i> Tm) | (Gi <i>,</i> Tm) | Efficiency       | e.g. dirt,   |
|                  |                  | (Gi <i>,</i> Tm) | Pmax/Nominal |

- Errors may self cancel (e.g. too high an insolation with too low a PV Efficiency)
- Exact fits to measured data can be found by "fixing" the unknowns – but these would then be technology or site dependent
- Every stage must be checked to be correct to validate a simulation, not just the sum of kWh/kWp

RCL



#### A 1 diode model (de Soto et al) is often used to fit an IV curve to 5 "knowns"



- Usually fitted to manufacturers' data sheets or a tested module
- 1 diode model is not a perfect fit to c-Si or thin film
- Problems fitting c-Si with high Rsh
- Diode theory is used to predict temperature dependence (rather than use IEC 61215 / 61646 standard measurements)
- Equation also predicts low light level response (rather than EN 50380 measurements)
- This fits 1 module ,what is the random variability in IV curves?

# Minimum variation in data sheet module SRCL parameters from for typical c-Si and 1J - Thin Film

(2% bins) More improvements in Isc than Voc or FF (3% bins) Most improvement in FF, Vmax (i.e. lower Rseries)



# kWh/kWp modelling error depends on <u>all</u> the uncertainties in measurements



| Calibrated reference          | >±2.5%          | for c-Si, less accurate for thin films                     |  |
|-------------------------------|-----------------|------------------------------------------------------------|--|
| module Pmax W                 |                 |                                                            |  |
| Flash tester W                | x% (1%?)        | Repeatability error                                        |  |
|                               |                 | (Not perfect AM1.5 spectrum, capacitance/timing issues)    |  |
| LID/Pmax degradation          | -1 to -3%       | B doped p type c-Si                                        |  |
| allowance %                   | -10 to -35%     | greater for thin films                                     |  |
| Pmax bin width W              | ~± <b>2.5</b> % | e.g. 200 <pmax<210w< th=""></pmax<210w<>                   |  |
|                               | ~± <b>2.5</b> % | or 100 <pmax<105w< td=""></pmax<105w<>                     |  |
| Insolation kWh/m <sup>2</sup> | ~ <b>±2-3%</b>  | pyranometer                                                |  |
|                               | ~±1.7-7%        | reference cell                                             |  |
|                               | ???             | Satellite data, Tilted plane algorithm, site interpolation |  |
| Module temperature            | ~3°C/sun        | (T <sub>JUNCTION</sub> -T <sub>BACK</sub> )                |  |
|                               | ~0.5 to 1.5%    | % Pmax error (assuming gamma is -0.15 to -0.5%)            |  |
| Yearly insolation             | ~±4%/y          | random variations, more effects such as el Niño etc.       |  |
| Micro climate                 | ?               | Can't linearly interpolate near coasts, mountains etc.     |  |
| Shading loss                  | ?               | Varying tree cover, new buildings, self shading            |  |
| Dirt loss                     | ?               | Site dependent daily rise, falls after clean or ~>5mm rain |  |
| Snow cover                    | ?               | Winter when low daily insolation – small effect ?          |  |
| Mounting C                    | ?               | High temperatures from close mounting, BIPV etc.           |  |

7-Mar-10

### Correlation of meteorological parameters (SRCL High Irradiance





**High** Irradiance correlates with

- **High Temperatures**
- Low Angle of incidence
- Low Air Mass
- Summer
- **High Beam Fraction**

#### Correlation of meteorological parameters (SRCL High Irradiance vs. Low Irradiance





**High** Irradiance correlates with

- **High Temperatures**
- Low Angle of incidence
- Low Air Mass
- Summer
- **High Beam Fraction**

Low Irradiance correlates with the opposite values Correlation of meteorological parameters Low Irradiance ; <u>High</u> vs. <u>Low</u> Clearness





High Clearness
→ clear morning/evening
→ high angle of incidence, clear sky
Low Clearness
→ dull daytime
→ Lower angle of incidence and overcast sky

Measured outdoor low light level efficiency will be a site dependent mix of these two conditions

### Measured efficiency vs. light level for **SRCL** Low and High clearness conditions (IWES Kassel)



- Low light value depends on sensor spectral response
- Averaged low light value depends on overcast: clear ratio (site specific)

7-Mar-10

Calculating IEC standard values from PV efficiency/nominal vs. irradiance and module temperature :



# Comparing power temperature coefficients **SRCL** (Gamma = 1/Pmax\*dPmax/dT) Simulation programs



# Comparing power temperature coefficients **SRCL** (Gamma = 1/Pmax\*dPmax/dT) Simulation programs vs. Manufacturer datasheet



### Comparing Low Light efficiency changes (LLEC = Eff@200/Eff@1000-1) Simulation programs





SRCL

Disagreement between program version values

# Comparing Low Light efficiency changes (LLEC = Eff@200/Eff@1000-1)



#### Simulation programs vs. Manufacturer datasheet





Also disagreement with manufacturer datasheet



#### Correcting simulation program efficiency to manufacturer's datasheet : c-Si #3



to low light levels for c-Si



Gamma (dPmax/dTemperature)

#### **Correcting simulation program**

efficiency to manufacturer's datasheet : Thin film #9





### Checking kWh/kWp simulation errors at 5 sites worldwide

|   | Site name, Country              | Latitude ° | POA<br>Insolation | Weighted<br>Tambient |
|---|---------------------------------|------------|-------------------|----------------------|
|   | Insolation, temperature         |            | kWh/m²            | °C                   |
| 1 | Munich, DE                      | 48°N       | 1345              | 14.3                 |
|   | →Dull, cool                     |            | *                 | *                    |
| 2 | Albuquerque NM, USA             | 35°N       | 2336              | 18.7                 |
|   | $\rightarrow$ Very bright, warm |            | ***               | **                   |
| 3 | Mumbai, IN                      | 19°N       | 1988              | 30.3                 |
|   | $\rightarrow$ Bright, Hot       |            | **                | ***                  |
| 4 | Seoul, KO                       | 38°N       | 1299              | 15.4                 |
|   | →Dull, cool                     |            | *                 | *                    |
| 5 | Sydney, AU                      | 34°S       | 1797              | 20.8                 |
|   | $\rightarrow$ Bright, warm      |            | **                | **                   |



45-50

# Modelled hourly insolation vs. irradiance and module temperature at 5 sites worldwide

# (more frequent measurements prove more insolation at higher light levels)



### Simulation program modelled kWh/kWp vs. power temperature coefficient error



SRCL

#### Simulation program modelled kWh/kWp vs. Low light efficiency change error





#### Conclusions



<u>Measured kWh/kWp</u> < ~±5% from several independent studies, dominated by [Wp.actual/Wp.nominal], not technology dependent

#### Simulation program kWh/kWp predictions

- dominated by errors in database values for "Efficiency at low light" and "Pmax vs. temperature"
- Efficiency at low light is modelled worse than manufacturers' claims for both c-Si and thin film
- Correcting low light efficiency biggest gain in cloudy conditions
- Correcting Pmax temp. coefficient biggest change in hot conditions
- Corrections values vary by manufacturer and technology
- c-Si has been modelled more pessimistically than thin film
- These corrections should bring modelled kWh/kWp closer together by technology to match real measurements better



#### **Acknowledgements : Oerlikon, IWES for data**

Next conference : <u>www.pvsat.org.uk</u>

"The British Staffelstein"

Southampton, UK

24-26 March 2010

Thank you for your attention !

SRCL papers : <u>www.steveransome.com</u>

